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Abstract

According to standard portfolio theory, the tangency portfolio is the only efficient stock 
portfolio. However, empirical studies show that an investment in the global minimum 
variance portfolio often yields better out-of-sample results than does an investment in 
the tangency portfolio and suggest investing in the global minimum variance portfolio. 
But little is known about the distributions of the weights and return parameters of this 
portfolio. Our contribution is to determine these distributions. By doing so, we answer 
several important questions in asset management.
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1 Introduction

Standard portfolio theory suggests that the tangency portfolio is the only efficient stock 
portfolio. However, many empirical studies show that an investment in the global 
minimum variance portfolio often yields better out-of-sample results than does an invest-
ment in the tangency portfolio (see, e.g., Jorion (1991), and Chopra and Ziemba (1993)). 
This result is typically attributed to the high estimation risk associated with expected 
returns�. Therefore many recent studies suggest investing into the global minimum vari-
ance portfolio instead of the tangency portfolio (see, e.g., Ledoit and Wolf (2003), and 
Jagannathan and Ma (2003)). 

�	 In this paper we deal only with estimation risk resulting from unknown return distribution parameters. In the 
more general definition of Bawa et al. (1976), estimation risk also includes situations in which not only the pa-
rameters, but also the functional form of the distribution is unknown. The estimation risk with respect to ex-
pected continuous returns is highlighted by Merton (1980). Dorfleitner (2003) points out that one has to dis-
tinct clearly between discrete returns (as used in our paper) and continuous returns.
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However, little is known about the distribution of the global minimum variance port-
folio. Dickinson (1974) calculates the unconditional distribution of the portfolio weights 
in the special case of two uncorrelated assets. Okhrin and Schmid (2005) generalize this 
result by allowing N assets with arbitrary correlation structure. But although the condi-
tional distribution is still unknown, it is necessary for calculating test statistics and confi-
dence intervals in small samples.
 
The main contribution of our paper is to derive the conditional distribution of the esti-
mated weights of the global minimum variance portfolio. As a by-product, we obtain 
estimates for the expected return and the return variance of the global minimum vari-
ance portfolio. If we know the conditional distributions, we can answer important ques-
tions in asset management. For example, what determines the extent of estimation risk? 
And, can an investor significantly reduce his portfolio risk by including additional assets 
in his portfolio? 

The paper is organized as follows. In Section 2 we briefly review the traditional approach 
of estimating the weights of the global minimum variance portfolio. In Section 3 we 
present an alternative OLS estimation approach, which leads to identical weight estimates. 
Using this alternative estimation approach we derive in Section 4 the conditional distribu-
tion of the estimated portfolio weights and the conditional distributions of the estimated 
return parameters. In Section 5 we show that we can also use our OLS approach when 
the returns are not normally distributed. In Section 6 we apply the results of Section 4 to 
calculate the estimation risk associated with the estimation of the global minimum vari-
ance portfolio. We show that our weight estimator leads to the lowest estimation risk of 
all unbiased weight estimators. In Section 7 we give some examples of how to apply our 
results in international asset management. Section 8 concludes.

2	T raditional Approach

Assume that there are N stocks in the capital market. We denote the discrete return of 
stock i from year t – 1 to year t by rt,i. The vector µ contains the expected returns per 
year, µi, of the N stocks. The N x N matrix Ʃ contains the return variances and covari-
ances σij. We assume that the returns are multivariate normally distributed. In addition, 
they are identically and independently distributed.

The global minimum variance portfolio (MV ) is the stock portfolio with the lowest return 
variance for a given covariance matrix Ʃ . It is the solution to the following minimiza-
tion problem:

​  min      
w=(w1,...,wN)

​w‵Ʃ w   s.t. w ‵ 1 = 1	 (1)

where 1 is a column vector of appropriate dimension whose entries are ones and w = 
(w1,...,wN)‵ is a vector of portfolio weights. The weights wMV = (wMV,1,...,wMV,N)‵ of the 
global minimum variance portfolio are given as 
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wMV = ​ ∑ -1 1 _____ 1‵ ∑ -1 1 ​.	 (2)

The expected return µMV  and the return variance ​σ​ MV​ 
2
 ​ of the global minimum variance 

portfolio are given as

µMV = µ‵wMV = ​ 
µ ‵∑ -1 1
 _____ 

1‵ ∑ -1 1
 ​	 (3)

and

​σ​MV​ 
2  ​ = w‵MV  ∑wMV = ​  1 _____ 1‵ ∑ -1 1 ​ .	 (4)

The lower variance bound ​σ​ MV​ 
2
 ​  can only be attained if we know the covariance matrix Ʃ 

of the stock returns. As highlighted before, we do not know the covariance matrix Ʃ. We 
must estimate it in real markets. Typically, researchers use historical return observations 
for this estimation.

The traditional estimation approach is to replace the expected returns µ and the covari-
ance matrix Ʃ  with their maximum likelihood estimators µ ̂  and Ʃ̂. in Equations (2)-(4). 
The estimated portfolio weights ŵMV  and return parameters µ̂  MV and σ​    ​ MV​ 

2
 ​ of the global 

minimum variance portfolio are nonlinear functions of the stock return parameter esti-
mates µ ̂  and  Ʃ̂. . Therefore, the distributions of ŵMV, µ ̂  MV and ​σ ̂ ​ MV​ 

2
 ​  are hard to determine, 

even if we do know the distributions of the parameter estimates µ̂   and Ʃ̂. 

3	OLS  Approach

We use a regression-based approach to determine the weights wMV, the expected return  µMV and the return variance ​σ​ MV​ 
2
 ​  of the global minimum variance portfolio. We rewrite 

the weights of the global minimum variance portfolio as regression coefficients. Without 
loss of generality, we choose the return of stock N to be the dependent variable:

rt,N = α + β1(rt,N – rt,1) + ... + βN–1(rt,N  – rt,N–1) + εt     t = 1,...,T	 (5)

where εt is a noise term that satisfies the standard assumptions of the classical linear regres-
sion model regarding errors. We note that the error term εt is by construction uncorrelated 
with all the return differences rt,N – rt,i. This absence of correlation allows us to apply 
the OLS estimation technique. To make use of the usual test statistics, we must also stip-
ulate independence.

The three statements in Proposition 1 describe the relation between the linear regression 
and the global minimum variance portfolio.

Proposition 1
1.	 The regression coefficients β1,...,βN–1 in Equation (5) correspond to the portfolio 

weights wMV,1,..., wMV,N–1 of the global minimum variance portfolio:
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βi = wMV,i.	  (6)

2.	 The coefficient α in Equation (5) corresponds to the expected return µMV of the global 
minimum variance portfolio:

α = µMV.	  (7)

3.	 The variance of the noise term  in Equation (5) corresponds to the variance of the 
global minimum variance portfolio:

​σ​ε​ 2​ = ​σ​ MV ​ 
2
  ​.	 (8)

To prove this proposition, we define βex, ​w​MV​ 
ex ​ and ​r​t​ ex​ as column vectors of dimension  

N – 1. The superscript ex indicates that the vector has no entry for asset N, i.e. these 
vectors contain the entries ​β​i​ 

ex​, ​w​MV,i​ 
ex  ​ and ​r​t,i​ 

ex​ with i = 1,…,N – 1. The (N – 1)x(N – 1) 
matrix Ω is the covariance matrix of the regressors of Equation (5):

Ω:= var(rt,N  1 –​ r​t​ 
ex​).	 (9)

The regression coefficients β ex are the standardized covariances of the regressors and the 
dependent variable:

β ex = Ω-1 cov (rt,N  1 –​ r​t​ 
ex​,rt,N).	 (10)

We must show that the weights ​w​MV​ 
ex ​ of the global minimum variance portfolio corre-

spond to the regression coefficients β ex. We can then compute the weight wMV,N as 	
1 – (​w​MV​ 

ex ​)‵1.

To prove β ex = 
 ​w​MV​ 

ex ​ , we consider an arbitrary portfolio P. Its return is determined by the 
weight vector ​w​P​ 

ex ​= (wP,1,..., wP, N–1)‵ and the stock returns ​r​t​ ex​ and rt,N  :

rt,P = (​w​P​ 
ex ​)‵​r​t​ 

ex​ + (1 – (​w​P​ 
ex ​)‵1) rt,N = rt,N – (​w​P​ 

ex ​)‵(rt,N  1 – ​r​t​ 
ex​)	 (11)

The return variance of this arbitrary portfolio P

​σ​P​ 
2​ = ​σ​N​ 2 ​  + (​w​P​ 

ex ​)‵Ω​w​P​ 
ex​ – 2(​w​P​ 

ex​)‵cov(rt,N  1 –​ r​t​ 
ex​, rt,N)	 (12)

is a function of the weights ​w​P​ 
ex​. To find the weights of the global minimum variance port-

folio, we minimize Equation (12) with respect to the portfolio weights ​w​P​ 
ex​. This mini-

mization leads to

​w​MV​ 
ex ​ = Ω-1cov(rt,N  1 –​ r​t​ 

ex​, rt,N).	 (13)

The weights (13) correspond to the regression coefficients (10), which proves the first 
statement of Proposition 1. 
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To prove Statements 2 and 3, we rearrange Equation (5) and use βi = wMV,i:

α + εt = wMV,1 · rt,1 + ... + wMV,N–1 · rt, N–1 + ​( 1 – ​∑ 
 i=1

 ​ 
N–1

 ​​wWM,i )​ · rt,N .	 (14)

The right-hand side of Equation (14) is the return of the global minimum variance port-
folio. Applying the expectation and the variance operator to Equation (14) proves State-
ments 2 and 3.

Proposition 1 shows that both the traditional and the OLS approaches lead to iden-
tical portfolio weights. However, the result is based on the assumption of known 
parameters. We show that the identity result holds even if we have to estimate the param-
eters. We define the OLS estimates of the coefficients in Equation (5) as α̂,β̂ 1,...,β̂N–1.	
​σ̂​ε​ 

2 ​= ​  1 ____ 
T – N

 ​ ​​t = 1​ 
T  ​  ​ε​̂ ​t​ 

2​ is the OLS estimate of the variance of εt.

Proposition 2
1.	 The traditional weight estimate ŵ

MV,i
 equals the OLS estimate:

ŵ
MV,i 

= β̂i     ∀i = 1,...,N – 1 	 (15)

 
ŵ

MV,N = 1 – ​∑ 
 ri=1

 ​ 

 N–1

 ​​β̂ i.	 (16)

2.	 The traditional estimate of the expected return µ̂
MV

 of the global minimum variance 
portfolio equals the OLS estimate:

µ̂
MV = α̂.	 (17)

3.	 The traditional estimate of the return variance of the global minimum variance port-
folio ​σ̂​MV​ 

2
  ​ is a multiple of the OLS estimate of the variance σ​̂ ​ε​ 

2​:

 ​σ̂​MV​ 
2
  ​ = ​ T – N ____ T  ​ σ​̂ ​ε​ 

2​ .
	 (18)

First, we prove Statement 1. The traditional approach is the solution to the minimiza-
tion problem

​  min    
w1,...,wN

​ ​∑ 
 j=1

 ​ 
  N

 ​​ ​∑ 
 i=1

 ​ 
  N

 ​​wiwjσ̂ij .	 (19)

In the OLS approach, we estimate the regression coefficients by solving the following 
minimization problem 
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​  min     
α, β1,...,βN–1

​  ​∑ 
 t=1

 ​ 
   T

 ​​ εt.	 (20)

(20) can be rewritten as

​  min     
α, β1,...,βN–1

​  ​∑ 
 t=1

 ​ 
   T

 ​​ ​[ –α + β1rt,1 + ... + βN–1 rt,N–1  ​( 1 – ​∑ 
 i=1

 ​ 
N–1

 ​​βi )​ rt,N  ]​
2

.	 (21)

Since the coefficients βi correspond to the portfolio weights wi (Proposition 1), and since 
the N portfolio weights add up to one, we can rearrange Equation (21) as follows:

​  min    
α,w1,...,wN

​ [–α + w1rt,1 + ... + wN–1 rt,N–1]2   s.t. ​∑ 
 i=1

 ​ 
  N

 ​​ wi = 1	 (22)

Differentiating (22) with respect to α leads to the necessary condition for a minimum:

α = w1 µ̂1 + ... + wN µ ̂ N.	 (23)

Here, µ̂
i = ​ 1 _ 

T
 ​
  
​∑t=1​ 

T
  ​rt,i​ is the estimated mean return of asset i. Using (23), we rewrite (22) 

as

​  min    
w1,...,wN

​ ​∑ 
 t=1

 ​ 
  N

 ​​ ​[ w1(rt,1
 –

 µ̂1
) + ... + wN (rt,N

 –
 µ̂N

) ]​2	 (24)

subject to the condition that the N portfolio weights add up to one. 

Rearranging the sum in (24) yields another representation of the OLS approach (20):

​  min    
w1,...,wN

​ ​∑ 
 i=1

 ​ 
  N

 ​​ ​∑ 
 j=1

 ​ 

  N

 ​​​[ wiwj  ​∑ 
  t=1

 ​ 

 T

  ​​(rt,i – µ̂i)(rt,i –  µ̂j) ]​ =​   min    
w1,...,wN

​ ​∑ 
 i=1

 ​ 
  N

 ​​ ​∑ 
 j=1

 ​ 
  N

 ​​wiwjσ̂ij  .	 (25)

Thus, the sum of the squared residuals in (20) is equivalent to (25). Since (25) and (19) 
differ only by the positive factor T, both optimization problems produce the same port-
folio weights. These remarks prove the first statement of Proposition 2.

We derive Statement 2 from the necessary condition (23). Replacing wi by ŵMV,i makes  
α̂ the estimated expected return of the global minimum variance portfolio, which leads to 
α̂ = µ̂

 
‵ŵ

MV
 . The expression µ̂

 
‵ŵ

MV
  equals the traditional estimator µ̂

MV  
.
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We derive Statement 3 accordingly. The sum of the squared residuals (20) equals Tσ​̂ ​MV​ 
2  ​ . 

This result can easily be seen by rewriting (25) as T minww‵Ʃw. Its solution T ŵ‵
MV ƩŵMV 

equals T times the estimated variance of the global minimum variance portfolio.

Proposition 2 states that the OLS estimation technique and the traditional approach 
yield identical estimates of the portfolio weights of the global minimum variance port-
folio. Therefore, the estimates of ŵMV,i are identical. The variance estimates differ only by 
the scalar (T – N ) /  T.

By using the equivalence of the two estimation approaches, we can transfer all the distribu-
tional results of the OLS approach to the traditional approach. Thus, we have a powerful 
yet simple way of deriving the conditional distributions of the estimated weights and 
return parameters. 

4 Conditional Distribution

We estimate the weights of the global minimum variance portfolio by using the linear 
regression (5). As before, we assume serially independent and normally distributed returns. 
We define the matrix Z, which contains the regressors zt = (rt,N – rt,1 ,...,  rt,N  – rt,N–1)‵ 
of the linear regression (5):

Z:= ​( ​ 1 _ 
​ ⋮ _ 
1
 ​    
 ​       ​ 
  ​z​1​ ‵ ​ __ 
​ ⋮ __ 
​z​T​ ‵ ​

 ​
 ​ )​ = (1 z)	 (26)

The vector ​ 
_
 z​ = ​ 1 __ T  ​​∑t=1​ 

T
  ​​ zt consists of the arithmetic averages of the regressors. 

Proposition 3 gives the conditional distributions of the estimated portfolio weights and 
return parameters. The information set we condition on consists of the T x (N – 1)matrix 
of return differences z.

Proposition 3

1.	 The OLS estimates of the portfolio weights, β̂ ex, are jointly normally distributed:

β̂ ex |z ~ N ​( ​w​MV​ 
ex ​ ; ​σ​MV​ 

2  ​ (z ‵z – T ​ 
_
 z​​ 
_
 z​ ‵)-1 )​.	 (27)

2.	 The OLS estimate of the expected return, α̂, is normally distributed:

α̂ | z ~ N (µMV ; ​σ​ MV​ 
2
 ​ (1| T +  ​ 

_
 z​ ‵(z‵z – T  ​ 

__
 zz​ ‵)-1​ 

_
 z​)).	 (28)

3.	 Let ​σ​ε​ 2​ be the OLS estimate of the variance of the error term εt. The following expres-
sion is χ2-distributed:
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(T – N)​ ​σ̂​ε​ 2​ ___ 
​σ​MV​ 

2  ​
 ​ ~ χ2 (T – N).	

￼
(29)

Proposition 3 is based on Proposition 1. The OLS estimator B̂  = (α̂, β̂1,..., β̂N–1)‵ = 
(Z  ‵Z)-1Z  ‵rN with rN  = (r1,N,...,rT,N)‵ is normally distributed:

B̂ | z ~ N(B; ​σ​MV​ 
2  ​ (Z  ‵Z)-1).	 (30)

B = (α   , β1,..., βN–1)‵ is the parameter vector. From (30), we see that the expectations of 
the conditional estimators β̂ex and α̂ are β ex and α. According to Proposition 1, the vari-
ance ​σ​ε​ 2​ is equal to the variance of the global minimum variance portfolio ​σ​MV​ 

2  ​ .
 
Using (26), we partition the matrix Z  ‵Z: 

Z  ‵Z = ​( ​  T ___ 
T ​ 

_
 z​ 
 ​ ​  T ​ 

_
 z​ ‵ ____ 

z‵z
 ​  )​.	 (31)

The inversion of the matrix Z  ‵Z yields�:

(Z  ‵Z)-1 = ​( ​ 1|T +  ​ 
_
 z​ ‵(z‵z – T  ​ 

__
 zz​ ‵)-1​ 

__
 z​
  _____________________  

(z‵z – T  ​ 
__

 zz​ ‵)-1​ 
__

 z​
 ​   ​ 

​ 
_
 z ​‵(z‵z – T  ​ 

__
 zz​ ‵)
  ____________  

(z‵z – T  ​ 
__

 zz​ ‵)-1
 ​ )​ .	 (32)

​σ​MV​ 
2  ​ times the upper left element of the right hand side of Equation (32) is the condi-

tional variance of α̂. ​σ​MV​ 
2  ​ times the lower right element is the conditional covariance ma-

trix of β̂ex.

Proposition 3 states the core results of this paper. It allows us to calculate the estimation 
risk involved in estimating the global minimum variance portfolio, and to carry out statis-
tical tests concerning the estimated weights and return parameters. 

5	N on-Normal Returns

Throughout this paper, we assume that stock returns are independent and normally 
distributed. However, we can also use our OLS approach for non-normal returns. 

Instead of restricting ourselves to the multivariate normal distribution, we now consider the 
broader class of elliptical distributions. Among others, the class of elliptical distributions 
comprises the normal distribution and the Student-t-distribution. We choose this class of 
distributions for two reasons. First, because elliptical distributions support mean variance 
analysis since they fulfil the two requirements: they can be entirely characterized by their 

�	 See Greene (2000, 34).
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mean and variance, and linear combinations of elliptically distributed random variables are 
again elliptically distributed. Second, because elliptical distributions can describe empirical 
features of stock returns, especially the heavy tails of stock return distributions�.

If we no longer assume normally distributed returns, but instead assume elliptically distrib-
uted returns, then the noise term εt in Equation (5) will remain uncorrelated of the regres-
sors zt. However, the error term will not necessarily be independent of the regressors. For 
instance, the correlation of the squared noise term ​ε​t​ 2​ and the squared regressors ​z​t,i​ 

2  ​may 
be different from zero. This dependence means that the standard assumptions of the linear 
regression model are no longer fulfilled, because the noise terms εt are heteroskedastic,  
i.e., the variance of εt varies in a systematic way. Nevertheless, we can apply the OLS 
method. Propositions 1 and 2 remain unaltered, but we have to modify the crucial Prop-
osition 3. The OLS estimates remain unbiased and consistent, but the estimates α̂ and β̂  
are only asymptotically normally distributed. We must also modify the estimated covari-
ance matrix. To obtain correct standard errors in the regression, we can adjust the covari-
ance matrix using White’s (1980) correction. If there is not only heteroskedasticity, but 
also autocorrelation in the data, we must use the Newey and West (1987) correction 
instead. 

6	 Estimation Risk

Again assuming independent and normally distributed returns, we analyze the quality of 
the traditional weight estimates. We judge the quality of the estimator by looking at the 
estimation risk. The estimation risk is the additional out-of-sample return variance due to 
errors in the estimated portfolio weights.

We consider an investor who uses T return observations r1,...,rT to estimate ŵMV . Using 
the estimates ŵMV , the investor invests his funds for the period to follow. This strategy 
yields the out-of-sample return r̂ T + 1, MV  = ŵ‵

MV  rT + 1. Its risk is var(r̂T + 1,MV | r1,...,rT) 
which depends on the realizations of the stock returns from t = 1 to t = T. 

Proposition 4
If the portfolio weights are estimated traditionally, then the conditional out-of-sample 
return variance is given by

var(r̂T + 1,MV | r1,...,rT) = ​σ​MV​ 
2  ​ + ˜  R(ŵMV) 	 (33)

with

3	 There is another feature of normally distributed returns that is not in accordance with stock returns: due to the 
limited liability, stock returns are bounded by –1. Under the assumption of the normal distribution, there is a 
strictly positive probability for returns to be smaller than –1. This feature characterizes other distributions within 
the class of elliptical distributions. However, there are elliptical distributions with bounded support. See Inger-
soll (1987, 105).
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 ˜  R(ŵMV) = (ŵMV – wMV)‵Ʃ(ŵMV – wMV).	  (34)

Proposition 4 (proof in Appendix 1) shows that the risk depends on two components. The 
first component, ​σ​MV​ 

2  ​ , is the innovation risk, i.e., the risk due to the randomness of stock 
returns. The second component, ˜  R(ŵMV), is the estimation risk. If the investors knew all 
return distribution parameters, they would choose (2) as their weights when they select 
the global minimum variance portfolio. In this case, there is no estimation risk and (33) 
reduces to (4). However, since the investor does not know the distribution parameters and 
instead must estimate them, his estimated portfolio weights, ŵMV , differ from the true 
weights, wMV. This difference leads to the conditional estimation risk  ̃ R(ŵMV). We note 
that the wMV is a random variable that takes on only positive values or zero. The more the 
estimated weights differ from the true weights, the larger is the estimation risk. We obtain 
the unconditional estimation risk by applying the expectation operator to var(r̂T+1,MV | r1,
...,rT).

Proposition 5
If the portfolio weights are estimated traditionally, then the unconditional out-of-sample 
return variance is given by 

E(var(r̂T+1,MV | r1,...,rT)) = ​σ​ MV​ 
2
 ​ + ​ 

_
 R​(ŵMV) 	 (35)

with

 ​ 
_
 R​(ŵMV) = ​σ​ MV​ 

2
 ​ ​  N – 1 _______ T – N – 1 ​ .	

￼
(36)

According to this proposition (proof in Appendix 2) the larger the innovation risk ​σ​ MV​ 
2
 ​, 

the larger the investment universe N and the shorter the estimation period T, the higher 
is the unconditional estimation risk ​ 

_
 R​(ŵMV). This result supports the claim in Jaganna-

than and Ma (2003), according to which the estimation risk is most prominent in large 
investment universes.

Proposition 6 proves that the estimation risk cannot be reduced by choosing another unbi-
ased weight estimator. The traditional weight estimator is the best unbiased estimator.

Proposition 6
The traditional weight estimator ŵMV  given in Equation (15) has the lowest unconditional 
estimation risk ​ 

__
 R​ (·) of all unbiased weight estimators ̆wMV 

​ 
_
 R​(ŵMV) ≤  ​ 

_
 R​(̆ wMV )	 (37)

This proposition follows from the properties of OLS estimators. When there are inde-
pendent and normally distributed error terms, the OLS estimator is the best unbiased 
weight estimator. According to Proposition 2, this statement is also true for the tradi-
tional estimator. In Appendix 3 we show that this property implies the lowest estimation 
risk possible.
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Although Proposition 4 still holds without the normality assumption, Proposition 5 is no 
longer valid. But if there is considerable estimation risk even in the best of all situations 
(iid-returns, normal distribution), then there is reason to believe that there will be a lot 
more estimation risk in less favourable situations. When there are non-normal returns, we 
must modify Proposition 6. In this case, the traditional estimator is only the best linear 
unbiased estimator.

7 Statistical Inference

Here, we use our distributional results to address problems in international asset allo-
cation. We conduct an empirical study based on international stock data. Our data set 
consists of monthly MSCI total return indexes of the G7 countries: Canada, France, 
Germany, Italy, Japan, the United Kingdom, and the United States. These countries cover 
the major currency regions (dollar, euro, pound, yen). We calculate all indexes in euros, 
i.e., we take the view of an German investor. The data set covers the period from January 
1984 to December 2003. 

We choose the return of the German index as the dependent variable rt,N in the regres-
sion (5). We run the regression and obtain estimates of the portfolio weights of the global 
minimum variance portfolio. In Table 1 we report the weight estimates ŵMV,i, their stan-
dard errors and the t-statistics. Appendix 4 provides the exact formula of the test statistic. 
As the stock returns show more kurtosis than is compatible with the normal distribution, 
we apply the White (1980) correction to obtain correct standard errors.

Table 1: Weight Estimates of the Global Minimum Variance Portfolio

Country (i) Weight Standard Error t-Statistic

Canada (Can) 0.0146 0.0998 0.1467

France (Fra) 0.0756 0.0772 0.9799

Germany (Ger) 0.1418 0.0881 1.6088

Italy (Ita) 0.0427 0.0512 0.8336

Japan (Jap) 0.1909 0.0570 3.3512

United Kingdom (UK) 0.3536 0.0946 3.7362

United States (USA) 0.1807 0.1067 1.6947

We estimate the weights of the global minimum variance portfolio for a universe of seven countries, rep-
resented by their MSCI equity market indexes (euro based, total return indexes, monthly observations,  
1984-2003). We use a regression-based approach for the weight estimation and we apply the White-correc-
tion for the standard errors.

Table 1 highlights that the UK market has the highest weight in the international global 
minimum variance portfolio, followed by Japan and the U.S. Only the weights for the 
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indexes of Japan, the UK and the U.S. are significantly different from zero at the 10% 
level. This empirical result suggests that a German investor who holds only German stocks 
should add American, Japanese, and British stocks to his domestic holdings.

To test whether a German investor can exclude several countries from his portfolio 
without increasing the risk of his portfolio, we apply the F-test as shown in Appendix 4. 
By using the F-test we can simultaneously test several linear restrictions on the portfolio 
weights. Our test is a simplified version of a spanning test. The spanning tests suggested 
in the literature (see, e.g., Kan and Zhou (2001)) test whether the inclusion of an addi-
tional asset changes the minimum variance frontier. Our test focuses not on the whole 
frontier, but on only one portfolio of the frontier, the global minimum variance portfolio. 
If we find a significant change in the global minimum variance portfolio, then we know 
that the minimum variance frontier has also changed. Thus, our test is sufficient for span-
ning. Since the global minimum variance portfolio does not depend on expected returns, 
we expect our test to have a higher power than traditional spanning tests4. 

First, we want to know whether a German investor can reduce his portfolio risk by diver-
sifying internationally. We test the hypothesis:

H0,1 	 International diversification does not pay for German investors, i.e. 
	 wMV,UK = wMV,USA =  wMV,Fra = wMV,Jap = wMV,Ita = wMV,Can = 0￼

The null hypothesis is rejected at the 1%-level (F (6,233)-statistic = 22.45). Thus, it pays 
for a German investor to diversify internationally. 

Next, we analyze whether adopting a naive diversification strategy or diversifying opti-
mally makes a difference: 

H0,2 	 Naive diversification (wMV,i = 1/7 ∀ i) offers the same risk diversification 
	 effect as optimal diversification.

H0,2 is rejected at the 10% level (F (6,233)-statistic = 2.06). We conclude that a German 
investor is better off choosing the weights according to (2) than by investing equally in 
all countries. 

Finally, we want to know whether investing in only one country per currency region 
reduces the diversification effect significantly. The countries invested in are Germany 
(euro), Japan (yen), the UK (pound) and the United States (dollar).

H0,3 	 Investing in one country per currency region (wMV,Can = wMV,Fra = wMV,Ita = 0)	
	 offers the same risk diversification as investing in all countries.

�	 Jorion (1985) develops an alternative test to address this question. He uses a maximum likelihood test to check 
whether a given portfolio is significantly different from the global minimum variance portfolio. Although the 
distribution of the Jorion test is known only asymptotically, the distribution of our test is known even in small 
samples.
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We cannot reject H0,3 (F(3,233)-statistic = 0.58). The results suggest that covering the 
major currency regions by choosing only one country for each currency region provides 
sufficient diversification.

The three hypotheses tested above are examples of how to use the results of this paper. 
Obviously, it is easy to find other hypotheses to test with our approach.

8	C onclusion

In this paper we show that the weights of the global minimum variance portfolio are equal 
to regression coefficients. This finding allows us to transfer the entire OLS methodology 
to the estimation of the weights and return parameters of the global minimum variance 
portfolio. Using the OLS methodology, we can derive the conditional distributions of the 
estimated portfolio weights and estimated return parameters. These conditional distribu-
tions are necessary for analyzing the global minimum variance portfolio, and they are a 
contribution to the literature on distributions of estimated portfolio weights.

We discuss two applications of our distributional results. The first application is to assess 
the extent of the estimation risk involved in estimating the global minimum variance 
portfolio. Our second application is to test important hypotheses in international asset 
management. These two applications serve as an illustration of the usefulness of our 
approach.

Appendix 1

Using ŵMV = wMV + (ŵMV – wMV) we rewrite the conditional out-of-sample return 
variance as

var(r̂T+1,MV | r1,...,rT)  =	ŵ‵
MVƩŵMV

	 =	​σ​ MV​ 
2
 ​ + (ŵMV  –  wMV)‵Ʃ(ŵMV – wMV)

	 	
	 +	2w‵MVƩ(ŵMV  –  wMV).	 (38)

We can rewrite the last term in  as 

2(w‵MVƩŵMV – w‵MVƩwMV).	 ￼
(39)

The first term is the return covariance of a portfolio with the portfolio weights ŵMV and 
the global minimum variance portfolio wMV. The second term is the return variance of the 
global minimum variance portfolio. Huang and Litzenberger (1988, 68) prove that the 
return covariance of an arbitrary stock portfolio and the global minimum variance port-
folio is equal to the return variance of the global minimum variance portfolio. Therefore, 
the last term in (38) drops out. We have now completed the proof of Proposition 4.
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Appendix 2

Here, we prove Proposition 5. 

Lemma 1 shows how to express the unconditional estimation risk R(·) of any unbiased 
weight estimator ̆ wMV  as a function of the estimator’s unconditional variance var(̆ ​w ​MV​ 

ex ​).In 
Lemma 2 we compute the unconditional variance of a specific unbiased weight estimator, 
the traditional weight estimator. By combining these two lemmata, we obtain the expres-
sion for the estimation risk ​ 

__
 R​(ŵMV) as stated in Proposition 5.

Lemma 1
Let ̆ wMV  be any unbiased weight estimate. Then the unconditional out-of-sample return 
variance is 

E(var(̆ r T+1,MV | r1,...,rT)) = ​σ​MV​ 
2  ​ + ​ 

_
 R​(̆ wMV)	 (40)

with

 ​ 
_
 R​(̆ wMV) = tr[var(̆ ​w ​MV​ 

ex ​)Ω].	
￼

(41)

Proof of Lemma 1: Using (11) we can rewrite the out-of-sample return as

 ̆r T+1,MV  =  rT+1,N – (̆ ​w ​MV​ 
ex ​)‵(rT+1,N 1 – ​r​T+1​ 

ex  ​).	 (42)

The unconditional out-of-sample variance is

E (var(̆ r T+1,MV | r1,...,rT)) = ​σ​N​ 2 ​ + E((̆ ​w ​MV​ 
ex ​)‵Ω( ̆​w ​MV​ 

ex ​))

	 – 2E(̆ ​w ​MV​ 
ex ​)‵cov(rT+1,N 1 – ​r​T+1​ 

ex  ​,r T+1,N).	 (43)

Setting E (̆ ​w ​MV​ 
ex ​) = ​w​MV​ 

ex ​  + E(̆ ​w ​MV​ 
ex ​  –  ​w​MV​ 

ex ​), we rewrite the expression E((̆ ​w ​MV​ 
ex ​)‵Ω ̆​w ​MV​ 

ex ​) 
as

E ((̆ ​w ​MV​ 
ex ​)‵Ω ̆​w ​MV​ 

ex ​) = (​w​MV​ 
ex ​ )‵Ω​w ​MV​ 

ex ​ + E((̆ ​w ​MV​ 
ex ​ – ​w ​MV​ 

ex ​)‵Ω ̆ ​(w ​MV​ 
ex ​  – ​w​MV​ 

ex ​))	
	 + 2E(̆ ​w ​MV​ 

ex ​ – ​w ​MV​ 
ex ​)‵Ω​w ​MV​ 

ex ​ .	 (44)

Inserting (44) in (43) and using

​σ​MV​ 
2  ​ = ​σ​N​ 2 ​ + (​w​MV​ 

ex ​ )‵Ω ̆​w ​MV​ 
ex ​ – 2(​w​MV​ 

ex ​ ))‵cov(rT+1,N 1 – ​r​T+1​ 
ex  ​,rT+1,N)	 (45)

we get

E (var(̆ r T+1,MV | r1,...,rT)) = ​σ​MV​ 
2  ​ + E((̆ ​w ​MV​ 

ex ​ – ​w ​MV​ 
ex ​)‵Ω(̆ ​w ​MV​ 

ex ​  – ​w​MV​ 
ex ​)).	 (46)

Finally, we deal with the expression E((̆ ​w ​MV​ 
ex ​ – ​w ​MV​ 

ex ​)‵Ω(̆ ​w ​MV​ 
ex ​  –  ​w​MV​ 

ex ​)).
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E((̆ ​w ​MV​ 
ex ​  – ​w ​MV​ 

ex ​)‵Ω(̆ ​w ​MV​ 
ex ​  –  ​w​MV​ 

ex ​))	= E(tr((̆ ​w ​MV​ 
ex ​  – ​w ​MV​ 

ex ​)‵Ω(̆ ​w ​MV​ 
ex ​  – ​w​MV​ 

ex ​)))

	 = E(tr((̆ ​w ​MV​ 
ex ​  – ​w​MV​ 

ex ​)(̆ ​w ​MV​ 
ex ​  – ​w​MV​ 

ex ​)‵Ω))
	
	 = tr((̆ ​w ​MV​ 

ex ​  – ​w​MV​ 
ex ​)(̆ ​w ​MV​ 

ex ​  – ​w​MV​ 
ex ​)‵)Ω)	

	 = tr(var(̆ ​w ​ MV  ​ 
ex  ​)Ω)	 (47)

Lemma 1 results directly from (46) in combination with (47).

The estimation risk given by (41) depends on the estimator’s variance var(̆ ​w ​ MV ​ 
ex ​). For the 

traditional estimator we can state this variance explicitly. We do this in Lemma 2.

Lemma 2
The unconditional variance of the traditional weight estimator (​ŵ​MV​ 

ex
 ​) is

var(​̂ w ​ MV​ 
ex ​) = ​σ​MV​ 

2  ​ ​  1 _______ T – N – 1 ​ Ω
-1.	

￼
(48)

Proof of Lemma 2: From the first statement of Proposition 2 in connection with the first 
statement of Proposition 3 we get the conditional variance:

var(​ŵ​MV​ 
ex

 ​ | z) = ​σ​MV​ 
2  ​ (z ‵z – T ​ 

_
 z​​ 
_
 z​ ‵)-1.	

￼
(49)

The variance decomposition theorem provides the relation between the unconditional 
and conditional variance:

var(​ŵ​MV​ 
ex

 ​) = E(var(​̂ w ​ MV​ 
ex ​ | z)) + var(E(​ŵ​MV​ 

ex
 ​ | z)).	

￼
(50)

Since the estimator ​ŵ​MV​ 
ex

 ​  is unbiased, the second term on the right hand side of (50) is 
zero. Therefore, it remains to determine the expectation of (z ‵z – T ​ 

_
 z​​ 
_
 z​ ‵)-1. The matrix 

(z ‵z – T ​ 
_
 z​​ 
_
 z​ ‵) is Wishart distributed, which follows from the assumption of normally 

distributed returns:

z ‵z – T ​ 
_
 z​​ 
_
 z​ ‵ =  ​∑ 

 t=1
 ​ 

   T

 ​​ (zt – ​ 
_
 z​ )(zt – ​ 

_
 z​ )‵ ~ W(Ω, T – 1, N – 1).	 (51)

The expectation of a random matrix whose inverse is Wishart distributed is shown in Press 
(1972, 112):

E((z ‵z – T ​ 
_
 z​​ 
_
 z​ ‵)-1) =  ​  1 _______ T – N – 1 ​ Ω

-1.	
￼

(52)

Lemma 2 follows immediately from (52). Inserting (48) into (41) yields (36). We have 
now completed the proof of Proposition 5.
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Appendix 3

Based on (40) of Lemma 1, we can state the difference in the unconditional estimation 
risk between using an arbitrary unbiased weight estimator ̆ wMV  and using the traditional 
estimator ŵMV, respectively:

 ​ 
__

 R​(̆wMV) –  ​ 
__

 R​(ŵMV) = tr[var(̆ ​w​  MV  ​ 
ex  ​)Ω] – tr[var(​ŵ​MV​ 

ex
 ​ )Ω] = tr[∆Ω]	 (53)

with

∆ = var(̆ ​w​MV​ 
ex ​ ) – var(​ŵ​MV​ 

ex
 ​ ).	 (54)

As ​ŵ​MV​ 
ex

 ​  is the best unbiased estimator, the difference matrix ∆ is at least positive semi-defi-
nite. Since the trace of the matrix product of two semi-definite matrices is never negative, 
the expression tr[∆Ω]in (53) is not negative, either5. Therefore, there is no unbiased 
weight estimator with lower unconditional estimation risk than that of the traditional esti-
mator6. 

Appendix 4

Here, we provide the test statistics used in Section 7. In the case of non-normally distrib-
uted returns, these statistics are only asymptotically exact and we must adjust the esti-
mated covariance matrix as noted in Section 5.

Let q = (q1,...,qN–1)‵ be an arbitrary non-stochastic vector. Then the following statistic 
is t-distributed:

​ 
q ‵​ŵ​MV​ 

ex
 ​  – q ‵​w ​ MV​ 

ex  ​
  _______________  

​   √
_______________

  σ​̂ ​ε​ 
2​ q ‵(z ‵z – T ​ 

_
 z​​ 
_
 z​ ‵)-1q ​

 ​ ~ t(T – N)	 (55)

Since the estimated weight of asset N is a linear combination of the other weights, i.e., 
ŵMV,N = 1 – 1‵​ŵ​MV​ 

ex
 ​, we can derive the distribution of ŵMV,N from (55) by setting q = –1:

￼

​ 
wMV,N – ŵMV,N  _______________  

​   √
_______________

  σ​̂ ​ε​ 
2​ 1 ‵(z ‵z – T ​ 

_
 z​​ 
_
 z​ ‵)-11 ​

 ​ ~ t(T – N).	 (56)

In the third column of Table 1, we report the t-statistic as computed by  for the weights  
i = Can, Fra, Ita, Jap, Uk, US and by (56) for the weight i = Ger.

�	 See Lütkepohl (1996, 21).
�	 If we give up the assumption of normality, the traditional estimator is the best linear unbiased estimator. For the 

Gauss-Markov-Theorem see, e.g., Hayashi (2000, 27-29).
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Let SSR and SSRR be the sum of the squared residuals in the unrestricted and restricted 
regression. Let m ≤ N – 1 be the number of linear independent restrictions. Then the 
following statistic is F-distributed:

F = ​ T  –  N _____ m  ​ ​( ​ SSRR ____ 
SSR

 ​ – 1 )​ ~ F (m,  T – N)	 (57)

We calculate this statistic for the hypotheses H0,1 to H0,3.
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