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absTracT

since its first introduction in the schmalenbach business review, Hahn et al.’s (2002) finite 
mixture partial least squares (FiMiX-PLs) approach to response-based segmentation in 
variance-based structural equation modeling has received much attention from the mar-
keting and management disciplines. When applying FiMiX-PLs to uncover unobserved 
heterogeneity, the actual number of segments is usually unknown. As in any cluster-
ing procedure, retaining a suitable number of segments is crucial, since many manage-
rial decisions are based on this result. in empirical research, applications of FiMiX-PLs rely 
on information and classification criteria to select an appropriate number of segments to 
retain from the data. However, the performance and robustness of these criteria in deter-
mining an adequate number of segments has not yet been investigated scientifically in 
the context of FiMiX-PLs. by conducting computational experiments, this study provides 
an evaluation of several model selection criteria’s performance and of different data char-
acteristics’ influence on the robustness of the criteria. the results engender key recom-
mendations and identify appropriate model selection criteria for FiMiX-PLs. the study’s 
findings enhance the applicability of FiMiX-PLs in both theory and practice.
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1 inTrodUcTion

Structural	equation	models	are	widely	used	in	business	research	to	model	relations	between	
unobserved	constructs	and	manifest	variables.	Most	applications	assume	that	data	come	
from	a	homogeneous	population.	However,	this	assumption	of	homogeneity	is	unrealistic,	
since	individuals	are	likely	to	differ	in	their	perceptions	and	evaluations	of	latent	constructs	
(Ansari,	Jedidi,	and	Jagpal	(2000)).	To	account	for	heterogeneity,	researchers	frequently	use	
sequential	procedures	in	which	homogeneous	subgroups	are	formed	by	means	of	a-priori	
information,	or	else	they	revert	to	the	application	of	cluster	analysis	techniques.	However,	
none	of	these	approaches	is	considered	satisfactory,	because	observable	characteristics	often	
gloss	over	the	true	sources	of	heterogeneity	(Wedel	and	Kamakura	(2000)).	Conversely,	
the	application	of	traditional	cluster	analysis	techniques	suffers	from	conceptual	shortcom-
ings	and	cannot	account	for	heterogeneity	in	the	relations	between	latent	variables.	These	
weaknesses	have	been	broadly	recognized	in	the	prior	literature;	consequently,	research	
efforts	have	been	devoted	to	the	development	of	model-based	clustering	methods	(e.g.,	
Jedidi,	Jagpal,	and	DeSarbo	(1997a)).

Uncovering	unobserved	heterogeneity	in	covariance-based	structural	equation	modeling	
(CBSEM)	has	been	studied	for	several	years	(Arminger	and	Stein	(1997);	Jedidi,	Jagpal,	
and	 DeSarbo	 (1997a);	 Dolan	 and	 van	 der	 Maas	 (1998);	 Muthén	 (2008)).	 Never-
theless,	 only	 recently	 has	 research	 interest	 focused	 on	 this	 problem	 in	 the	 context	
of	 partial	 least	 squares	 (PLS)	 path	 modeling	 (Wold	 (1982);	 Lohmöller	 (1989)),	
which	 is	 a	 complementary	modeling	 approach	 to	 the	widely	used	 covariance-based	
methods	(Jöreskog	and	Wold	(1982);	Hair,	Ringle,	and	Sarstedt	 (2011)).	Currently,	
researchers	 have	 proposed	 different	 approaches	 to	 latent	 class	 detection	 that	 hold	
considerable	promise	for	segmentation	tasks	in	PLS	path	modeling.	Sarstedt	(2008a)	
presents	a	theoretical	review	of	available	procedures	and	concludes	that	finite	mixture		
PLS	(FIMIX-PLS)	is	now	the	primary	choice	for	segmentation	tasks	within	a	PLS	context.

Hahn	et	al.	(2002)	introduced	the	FIMIX-PLS	technique	for	latent	class	detection.	
The	technique	was	later	advanced	by	Ringle,	Sarstedt,	and	Mooi	(2010)	and	Ringle,	
Wende,	and	Will	(2010),	and	implemented	in	the	software	application	SmartPLS	2.0 
(M3)	(Ringle,	Wende,	and	Will	(2005)).	The	method	allows	the	simultaneous	estima-
tion	of	model	parameters	and	segment	affiliations	of	observations.	Simulation	studies	
(e.g.,	Esposito	Vinzi	et	al.	(2007);	Ringle,	Sarstedt,	and	Schlittgen	(2010))	and	numer-
ical	comparisons	(Sarstedt	and	Ringle	(2010))	underline	favorable	capabilities	of	this	
approach	compared	to	those	of	alternative	segmentation	methods.	Furthermore,	empirical	
studies	(e.g.,	Hahn	et	al.	(2002);	Becker	(2004);	Conze	(2007);	Scheer	(2008);	Sarstedt,	
Schwaiger,	and	Ringle	(2009))	also	reveal	that	FIMIX-PLS	has	advantageous	features	
for	further	differentiating	and	specifying	the	findings	and	interpretation	of	PLS	path	
modeling	analyses.

However,	an	unresolved	problem	in	the	application	of	FIMIX-PLS	is	the	issue	of	model	
selection	(i.e.,	determining	of	the	number	of	segments	underlying	the	data;	Esposito	Vinzi	
et	al.	(2008)).	As	in	any	clustering	procedure,	retaining	a	suitable	number	of	segments	is	
crucial,	since	many	managerial	decisions	are	based	on	this	result.	A	misspecification	can	
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result	in	an	under-	or	over-segmentation,	thus	leading	to	flawed	management	decisions	
on,	for	example,	customer	targeting,	product	positioning,	or	determining	the	optimal	
marketing	mix	(Andrews	and	Currim	(2003a)).	If	the	number	of	segments	is	over-speci-
fied,	marketers	risk	treating	audience	segments	separately,	even	though	dealing	with	them	
as	a	group	would	be	more	effective.	But	if	a	market	is	under-segmented,	marketers	might	
fail	to	identify	distinct	segments	that	could	be	addressed	separately,	enabling	the	marketer	
to	more	precisely	satisfy	customers’	varying	wants.	Since	companies	may	spend	millions	of	
dollars	developing	and	targeting	market	segments,	the	costs	of	over-specifying	the	appro-
priate	number	of	segments	are	significant.	Moreover,	the	problem	of	revenue	losses,	which	
is	associated	with	under-segmenting	a	market	and	not	targeting	potentially	lucrative	niche	
segments,	is	a	highly	relevant	issue	(Boone	and	Roehm	(2002)).

Unlike	other	segmentation	procedures	in	PLS	path	modeling,	the	FIMIX-PLS	algorithm	
allows	the	researcher	to	compute	several	statistical	model	selection	criteria	that	are	well-
known	from	finite	mixture	modeling	literature	(Sarstedt	(2008a)).	Correspondingly,	in	
empirical	research,	applications	of	FIMIX-PLS	rely	on	criteria	such	as	Akaike’s	infor-
mation	criterion	(AIC,	Akaike	(1973)),	Bayesian	information	criterion	(BIC,	Schwarz	
(1978)),	consistent	AIC	(CAIC,	Bozdogan	(1987)),	and	normed	entropy	criterion	(EN,	
Ramaswamy,	DeSarbo,	and	Reibstein	(1993))	to	determine	the	number	of	data	segments	
that	should	be	retained.	Since	these	applications	use	real-world	data	in	which	the	number	
of	segments	is	unknown,	it	is	not	clear	whether	these	criteria	are	effective.	This	fact	is	
problematic,	since	previous	studies	have	shown	that	analytical	deviations	cannot	predict	
the	relative	performance	of	model	selection	criteria	(Lin	and	Dayton	(1997)).	

The	common	approach	to	this	problem	is	to	evaluate	the	efficacy	of	the	criteria	in	
detecting	segments	by	means	of	simulated	data.	However,	likelihood-based	fit	criteria	
are	frequently	not	comparable	across	segmentation	approaches	(Andrews	and	Currim	
(2003b))	and	classes	of	finite	mixture	models	(Yang	and	Yang	(2007)).	Consequently,	
their	performance	has	been	evaluated	in	different	contexts,	such	as	mixtures	of	univariate	
normal	distributions	(e.g.,	Bozodgan	(1994);	Celeux	and	Soromenho	(1996);	Biernacki	
and	Govaert	(1997)),	multivariate	normal	distributions	(Bozodogan	(1994);	Biernacki,	
Celeux,	and	Govaert	(2000)),	mixture	regression	models	(Andrews	and	Currim	(2003c);	
Sarstedt	(2008b)),	and	mixture	logit	models	(Andrews	and	Currim	(2003a)).	

These	simulation	studies	provide	evidence	that	different	criteria	are	particularly	effective	
for	specific	segmentation	approaches.	Hence,	prior	research	can	provide	only	limited	
guidance	on	the	criteria’s	performance	in	a	FIMIX-PLS	context.	Since	fitting	mixture	
models	to	large	“full-blown”	path	models,	which	is	often	done	against	the	background	
of	PLS’	properties	(Henseler	,	Ringle,	and	Sinkovics	(2009)),	quickly	exhausts	degrees	
of	freedom	(Henson,	Reise,	and	Kim	(2007)),	an	explicit	analysis	in	the	context	of	
FIMIX-PLS	is	necessary.	Despite	the	fundamental	relevance,	no	simulation	has	yet	
determined	an	accurate	model	selection	criterion	for	the	FIMIX-PLS	method.	This	
lacuna	in	research	is	particularly	critical,	because	FIMIX-PLS	continues	to	grow	in	
popularity.	Further,	recent	publications	have	demanded	that	FIMIX-PLS	should	be	
routinely	carried	out	when	evaluating	any	PLS	path	model	(Albers	(2010);	Ringle,	
Sarstedt,	and	Mooi	(2010)).	
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In	this	paper	we	contribute	to	the	knowledge	on	PLS	path	modeling	and	FIMIX-PLS	
segmentation	by	conducting	computational	experiments	that	allow	the	researcher	to	
examine	the	performance	and	robustness	of	alternative	model	selection	criteria.	There	
are	many	studies	on	computational	experiments	that	evaluate	estimators	in	the	context	of	
structural	equation	modeling.	Even	though	analytical	statistical	theory	can	address	some	
research	questions,	the	finite	sample	properties	of	structural	equation	model	estimators	
are	often	beyond	the	reach	of	established	asymptotic	theory.	Similarly,	distributions	of	
the	statistical	measures	of	fit	indexes,	such	as	model	selection	criteria,	are	not	even	asymp-
totically	known.	In	such	situations,	computational	experiments	and	Monte	Carlo	studies	
provide	an	excellent	method	for	evaluating	estimators	and	goodness-of-fit	statistics	under	
a	variety	of	conditions	(Paxton	et	al.	(2001)).	This	kind	of	approach	allows	the	researcher	
to	evaluate	performance	of	the	criteria	against	the	background	of	diverse	factors,	such	as	
sample	size,	number	of	segments,	or	the	path	model’s	complexity.	By	providing	recom-
mendations	on	the	selection	of	an	appropriate	model	selection	criterion,	our	paper	answers	
the	call	of	previous	studies	(Esposito	Vinzi	et	al.	(2007);	Sarstedt	(2008a))	and	contributes	
to	the	body	of	knowledge	in	PLS	path	modeling.	

The	remainder	of	this	paper	is	organized	as	follows.	After	a	brief	introduction	of	the	
FIMIX-PLS	method	in	Section	2,	we	discuss	the	model	selection	problem	in	the	context	
of	FIMIX-PLS	in	Section	3.	We	describe	the	experimental	design	and	present	the	analysis	
results	in	Section	4.	Lastly,	in	Section	5,	we	summarize	the	findings	and	discuss	potential	
limitations	as	well	as	opportunities	for	further	research.

2 THe FiMiX-PLs aPProacH 

The	 FIMIX-PLS	 method	 (Hahn	 et	 al.	 (2002))	 combines	 the	 strengths	 of	 the	 PLS	
method	with	the	advantages	of	classifying	market	segments	according	to	finite	mixture	
models	(e.g.,	Everitt	and	Hand	(1981);	McLachlan	and	Basford	(1988)).	Based	on	this	
concept,	FIMIX-PLS	simultaneously	estimates	the	structural	model	parameters	and	as-
certains	the	data	structure’s	heterogeneity	within	a	PLS	path	modeling	framework.	

Initially,	a	path	model	is	estimated	by	using	the	PLS	algorithm	and	empirical	data	on	
the	 aggregate	 data	 level.	 This	 implies	 that	 the	 perceptions	 of	 the	 constructs	 are	 ho-
mogeneous	 in	 the	outer	measurement	model.	Thereafter,	 the	 resulting	 latent	variable	
scores	 in	 the	 structural	 model	 are	 employed	 to	 run	 the	 FIMIX-PLS	 algorithm.	 The	
path	model’s	segment-specific	heterogeneity	is	concentrated	in	the	parameters	of	the	es-
timated	relations	between	latent	variables.	FIMIX-PLS	captures	this	heterogeneity	and	
calculates	 the	 probability	 of	 the	 observations’	 segment	 memberships,	 so	 that	 they	 fit	
into	each	of	the	predetermined	S numbers	of	segments.	Assuming	that	each	endoge-
nous	latent	variable	ηi	is	distributed	as	a	finite	mixture	of	conditional	multivariate	nor-
mal	densities	fi|s(·),	the	segment-specific	distributional	function	is	defined	as	follows:

ηi ~  ∑ 
s = 1

   
S

    ρs fi|s(ηi | ξi,  Bs,  Γs,  Ψs), (1)
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where	ξi is	 an	 exogenous	 variable	 vector	 in	 the	 inner	model	 regarding	observation	 i,	
Bs	is	the	path	coefficient	matrix	of	the	endogenous	variables,	and	Γs	the	exogenous	la-
tent	variables. Ψs depicts	the	matrix	of	each	segment’s	regression	variances	of	the	inner	
model	 on	 the	diagonal,	 zero	 else.	The	mixture	proportion	ρs	 determines	 the	 relative	
size	of	segment	s (s = 1, …, S)	with	ρs > 0 ∀s	and	∑ 

s = 1
  

S

  ρs  = 1.		

Substituting	fi|s(ηi | ξi,  Bs,  Γs,  Ψs)	results	in:

ηi =  ∑ 
s = 1

   
S

    ρs [   1
 ________  

(2π)Q/2   √
___

 |Ψs|  
   ]exp {–   1 _ 

2
  ((I – Bs)ηi + (– Γs)ξi)′ Ψ–1

s ((I – Bs)ηi 

 + (– Γs)ξi)}, (2)

where	Q depicts	the	number	of	endogenous	latent	variables	in	the	inner	model	and	I	
the	identity	matrix�.	We	use	an	EM	formulation	of	the	FIMIX-PLS	algorithm	for	sta-
tistical	computations	to	maximize	the	log-likelihood	of	equation	(2).	

Conceptually,	 FIMIX-PLS	 is	 equivalent	 to	 a	 mixture	 regression	 approach.	 However,	
the	 main	 difference	 is	 that	 the	 structural	 model	 can	 comprise	 a	 multitude	 of	 (inter-
related)	endogenous	latent	variables.	The	specification	of	such	a	system	of	linear	equa-
tions	cannot	be	realized	with	conventional	mixture	regressions	(Hahn	(2002)).

3 ModeL seLecTion in FiMiX-PLs

When	applying	FIMIX-PLS	to	empirical	data,	the	actual	number	of	segments	S	is	usu-
ally	unknown.	As	a	result	of	problems	that	arise	when	using	hypothesis	tests	in	a	finite	
mixture	model	framework	(Aitkin	and	Rubin	(1985)),	researchers	frequently	revert	to	
a	 heuristic	 approach.	 For	 example,	 they	 do	 so	 by	 building	 on	 model	 selection	 crite-
ria	that	can	be	categorized	into	information	and	classification	criteria	(McLachlan	and	
Peel	(2000)).	Information	criteria	are	based	on	a	penalized	form	of	the	likelihood,	since	
they	 simultaneously	 take	 into	 account	 a	 model’s	 goodness-of-fit	 (likelihood)	 and	 the	
number	of	parameters	used	to	achieve	that	fit.	Therefore,	they	correspond	to	a	penal-
ized	 likelihood	function,	 that	 is,	 two	times	the	negative	 log-likelihood	plus	a	penalty	
term	that	increases	with	the	number	of	parameters	and/or	the	number	of	observations.	
Information	criteria	generally	favor	models	with	a	large	log-likelihood	and	few	param-
eters,	and	are	scaled	so	that	a	lower	value	represents	a	better	fit.	Operationally,	the	re-
searcher	 examines	 several	 competing	 models	 with	 alternating	 numbers	 of	 segments,	
picking	the	model	that	minimizes	a	particular	information	criterion.	However,	in	line	
with	substantive	theory,	researchers	usually	use	a	combination	of	criteria	to	guide	this	
decision	in	their	applications	(Sarstedt	(2008b)).	

1	 We	note	that	this	presentation	differs	from	Hahn	et	al.’s	(2002)	original	presentation,	which	requires	additional	
descriptions	and	clarifications	in	some	instances	(see	Table A4	in	the	appendix).	Even	though	these	modifications	
do	not	significantly	affect	FIMIX-PLS’	capability	to	accurately	recover	parameters,	they	have	noticeable	effects	
on	the	development	of	log-likelihood	values.	We	have	implemented	corresponding	changes	in	the	experimental	
version	of	SmartPLS	that	will	be	made	available	in	the	software	version	that	will	follow	release	M3.
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Although	the	preceding	heuristics	account	for	overparametrization	through	the	integra-
tion	of	a	penalty	term,	they	do	not	ensure	that	the	segments	are	sufficiently	separated	in	
the	selected	solution.	Since	the	targeting	of	markets	requires	segments	to	be	differentiable	
–	that	is,	that	the	segments	are	conceptually	distinguishable	and	respond	differently	to	
different	marketing-mix	elements	and	programs	(Mooi	and	Sarstedt	(2011))	–	this	point	
is	of	great	practical	interest.	Based	on	an	entropy	statistic	that	indicates	the	degree	of	
separation	between	the	segments,	classification	criteria	can	help	assess	whether	the	anal-
ysis	produces	well-separated	clusters	(Wedel	and	Kamakura	(2000)).	These	classification	
criteria	include	combinations	of	log-likelihood	and	entropy-based	concepts,	such	as	the	
integrated	completed	likelihood	BIC	(ICL-BIC,	Biernacki,	Celeux,	and	Govaert	(2000))	
and	classification	likelihood	criterion	(CLC,	Biernacki	and	Govaert	(1997)).

In	the	past,	many	different	information	and	classification	criteria	were	developed	to	assess	
the	number	of	segments,	all	of	which	have	different	theoretical	underpinnings	and	statis-
tical	properties	(McLachlan	and	Peel	(2000)).	The	applicability	of	these	model	selection	
criteria	is	one	of	the	most	important	features	of	FIMIX-PLS,	since	alternative	approaches	
to	response-based	segmentation	in	PLS	path	modeling	do	not	provide	any	guidance	on	
model	selection	(Sarstedt	(2008a)).	

To	date,	only	limited	research	has	addressed	statistical	criteria’s	performance	concerning	
model	selection	in	finite	mixture	SEMs.	The	problem	of	testing	for	the	number	of	
segments	is	only	briefly	addressed,	if	at	all,	in	simulation	studies	that	test	newly	proposed	
segmentation	algorithms	in	a	CBSEM	context	(Jedidi,	Jagpal,	and	DeSarbo	(1997a);	
Arminger,	Stein,	and	Wittenberg	(1999)).	However,	it	is	important	to	note	that	these	
approaches	to	CBSEM	are	based	on	different	statistical	features	than	its	FIMIX-PLS	adap-
tion	by	Hahn	et	al.	(2002).	Since	FIMIX-PLS	is	essentially	based	on	a	mixture	regression	
concept	(Hahn	et	al.	(2002)),	previous	studies	in	this	context	can	provide	some	guidance	
regarding	model	selection	criteria’s	performance.

While	some	studies	focus	on	the	influence	of	specific	data	constellations	(e.g.,	Oliveira-
Brochado	and	Martins	(2006);	Sarstedt	(2008b);	Becker	et	al.	(2010)),	only	two	studies	
present	a	comprehensive	evaluation	of	data	characteristics’	influence	on	model	selection	
criteria’s	performance	in	mixture	regression	models.	In	their	primary	study,	Hawkins,	
Allen,	and	Stromberg	(2001)	assess	the	performance	of	different	criteria	in	determining	
the	number	of	segments	in	mixtures	of	linear	regression	models.	In	their	simulation	study,	
these	authors	provide	a	comparison	of	12	criteria	and	multiple	approximations	of	these,	
taking	into	account	three	data	characteristics:	the	number	of	segments,	degree	of	pair-
wise	separation	between	the	segments,	and	relative	segment	sizes.	Hawkins,	Allen,	and	
Stromberg	(2001)	compare	the	percentages	of	data	sets	in	which	each	criterion	identifies	
the	true	number	of	segments	(i.e.,	the	success	rate).	Based	on	the	analysis	results,	the	
authors	conclude	that	BIC	is	the	recommended	criterion	for	choosing	between	one-	and	
two-segment	mixtures	of	linear	regression	models.	None	of	the	measures	outperforms	the	
others	across	the	simulation	runs	for	three	and	four	segments,	but	all	the	criteria	perform	
poorly	for	four	segments,	showing	success	rates	of	less	than	50%.
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Andrews	and	Currim	(2003c)	investigate	the	performance	of	seven	model	selection	cri-
teria	used	with	mixture	regression	models.	These	authors	evaluate	eight	data	character-
istics	that	would	potentially	affect	the	criteria’s	performance,	including	the	number	of	
segments,	the	mean	separation	between	segment	coefficients,	sample	size,	and	relative	
segment	sizes.	Their	study	shows	that	because	it	has	the	highest	success	rate,	the	modi-
fied	AIC	with	a	penalty	factor	of	three	(AIC3,	Bozdogan	(1994))	is	clearly	the	best	cri-
terion	to	use	across	a	wide	variety	of	model	specifications	and	data	configurations.	

Although	 these	 studies	provide	 important	 insights	 into	 the	performance	of	 the	 crite-
ria,	no	previous	study	has	evaluated	their	efficacy	in	the	context	of	FIMIX-PLS,	which	
has	become	an	important	analysis	context	in	marketing	(Rigdon,	Ringle,	and	Sarstedt	
(2010)).	In	the	light	of	this	gap	in	the	academic	literature	and	the	importance	of	choos-
ing	the	correct	number	of	segments	in	marketing	studies,	an	evaluation	of	commonly	
used	model	selection	criteria	in	FIMIX-PLS	by	means	of	computational	experiments	is	
particularly	valuable	from	both	a	research	and	practice	perspective.

4 coMPUTaTionaL eXPeriMenTs

4.1	 Design

The	study	of	computational	experiments	analyzes	the	performance	and	robustness	of	
the	following	model	selection	criteria,	frequently	used	for	model	selection	in	finite	mix-
ture	modeling	(McLachlan	and	Peel	(2000);	Sarstedt	(2008b))�:

Information	criteria:	AIC	(Akaike	(1973)),	AIC3	(Bozdogan	(1994)),	AIC4	(Bozdogan	
(1994)),	AICc	(Hurvich	and	Tsai	(1989)),	BIC	(Schwarz	(1978)),	CAIC	(Bozdogan	
(1987)),	MDL2,	MDL5,	(both,	Liang,	Jaszczak,	and	Coleman	(1992)),	and	HQ	
(Hannan	and	Quinn	(1979)).
Classification	criteria:	lnLc	(Dempster,	Laird,	and	Rubin	(1977)),	NEC	(Celeux	and	
Soromenho	(1996)),	ICL-BIC	(Biernacki,	Celeux,	and	Govaert	(2000)),	PC	(Bezdek	
(1981)),	NFI	(Roubens	(1978)),	NPE	(Bezdek	(1981)),	AWE	(Banfield	and	Raftery	
(1993)),	CLC	(Biernacki	and	Govaert	(1997)),	and	EN	(Ramaswamy,	DeSarbo,	and	
Reibstein	(1993)).	

In	this	study,	we	manipulate	six	data	characteristics	(factors).	Our	choice	of	the	factors	
and	their	levels	draws	primarily	on	related	research	conducted	by	Hawkins,	Allen,	and	
Stromberg	(2001),	and	Andrews	and	Currim	(2003a;	2003c),	as	well	as	previous	em-
pirical	analyses	using	FIMIX-PLS:

Factor1:Number	of	segments	[2,	4].
	 Analyzing	a	two-	and	four-segment	solution	is	consistent	with	the	range	of	segments	

found	in	Hawkins,	Allen,	and	Stromberg’s	(2001)	primary	study	on	the	performance	of	

2	 Table A1	in	the	appendix	includes	the	formal	definitions	of	the	criteria.	The	reader	is	referred	to	the	references	
cited	below	for	detailed	discussions	of	these	criteria’s	theoretical	underpinnings.

n

n
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model	selection	criteria	in	the	context	of	mixtures	of	linear	models.	Furthermore,	these	
factor	levels	have	been	evaluated	in	numerical	FIMIX-PLS	experiments	(e.g.,	Ringle,	
Wende,	and	Will	(2005a);	Esposito	Vinzi	et	al.	(2007);	Rigdon,	Ringle,	and	Sarstedt	
(2010)).	The	selected	factor	levels	also	cover	findings	from	FIMIX-PLS	studies	using	real	
data	(e.g.,	Becker	(2004);	Scheer	(2008);	Sarstedt,	Schwaiger,	and	Ringle	(2009)).	In	
light	of	the	increased	complexity	of	the	analysis	task,	we	expect	an	inferior	performance		
from	the	model	selection	criteria	when	we	consider	a	higher	number	of	segments.

Factor2:	Number	of	observations	[100,	400].
	 This	factor	includes	two	different	levels.	We	choose	sample	sizes	of	100	and	400	because	

similar	levels	have	been	reported	in	related	simulation	studies	(Andrews	and	Currim	
(2003a;	2003c);	Sarstedt	(2008b)),	as	well	as	in	PLS	path	modeling	(e.g.,	Sarstedt	and	
Schloderer	(2010);	Wagner,	Henning-Thurau,	and	Rudolph	(2009))	and	FIMIX-PLS	
applications	(Sarstedt	and	Ringle	(2010)).	In	partial	accordance	with	the	consistency	at	
large	issue	for	PLS	path	modeling	(e.g.,	Hui	and	Wold	(1982);	Henseler,	Ringle,	and	
Sinkovics	(2009);	Hair,	Ringle,	and	Sarstedt	(2011)),	we	expect	a	better	performance	
from	the	model	selection	criteria	when	the	number	of	observations	increases.

Factor3:	Disturbance	term	of	the	endogenous	latent	variables	[10%,	25%].	
	 Past	research	has	identified	the	level	of	endogenous	latent	variables’	disturbance	term	as	

a	key	standard	for	clear-cut	segmentation	(e.g.,	Ringle	and	Schlittgen	(2007)).	In	line	
with	prior	research	on	response-based	segmentation	techniques’	performance	in	PLS	
path	modeling	(Becker,	Ringle,	and	Völckner	(2009);	Ringle,	Sarstedt,	and	Schlittgen	
(2010)),	we	choose	two	levels	of	disturbance	terms.	A	higher	level	disturbance	term	
complicates	the	segment	identification.	Thus,	we	expect	the	model	selection	criteria	to	
perform	poorly	if	there	is	an	increase	in	the	endogenous	latent	variables’	error	variance	
and,	hence,	in	the	manifest	variables.

Factor4:	Distance	between	segment-specific	path	coefficients	[0.25,	0.75].
	 Past	studies	support	the	assertion	that	similar	segments	are	harder	to	detect	(Hawkins,	

Allen,	and	Stromberg	(2001);	Andrews	and	Currim	(2003a;	2003c)).	Andrews	and	
Currim	(2003c)	account	for	very	high	levels	of	mean	separation	between	segment	coef-
ficients	(0.5,	1.0,	and	1.5),	but	we	choose	smaller	deviations,	as	they	more	adequately	
reflect	the	results	of	actual	applications	(e.g.,	Conze	(2007);	Sarstedt,	Schwaiger,	and	
Ringle	(2009)).	Hence,	in	this	study,	we	change	the	prespecified	path	coefficients’	
absolute	difference	between	segments.	We	assume	that	the	model	selection	criteria	
show	an	increased	performance	when	segments’	distinctiveness	increases	in	terms	of	
the	distance	between	the	segment-specific	path	coefficients.

Factor5:	Model	complexity	[low,	high].
	 Previous	simulation	studies	often	account	for	different	model	complexities.	For	

example,	in	the	context	of	mixture	logit	models,	Andrews	and	Currim	(2003a)	vary	
the	number	of	choice	alternatives.	In	their	follow-up	study	on	mixture	regression	
models,	these	authors	use	a	varying	number	of	predictors	to	account	for	different	levels	
of	model	complexity	(Andrews	and	Currim	(2003c)).	Following	this	notion,	we	utilize	
two	models,	one	with	low	complexity	and	another	with	high.
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	 The	PLS	path	model	with	lower	complexity	(Figure A2,	Appendix)	uses	four	exog-
enous	latent	variables	(ξ1, ξ2, ξ3, and ξ4),	all	of	which	relate	to	a	single	endogenous	
variable	(η1).	Thus,	there	are	four	relations	with	coefficients γ11, γ21, γ31,	and γ41 in	
the	structural	model.	In	the	data	simulation,	the	prespecification	of	the	path	coeffi-
cients	uses	a	higher	γ11	value	and	lower	values	for	γ21, γ31,	and γ41	for	the	first	group	
of	data.	For	the	second	group, γ21	is	at	a	higher	level,	but	all	the	remaining	path	
coefficients	consistently	remain	at	a	lower	level.	Depending	on	the	segment	under	
consideration,	the	same	logic	holds	for	four	segments,	when	the	path	coefficients	are	
increased	in	turn.

	 Since	the	size	of	the	coefficients	is	not	important	but	their	distinctiveness	is,	we	focus	
on	their	alternative	levels	of	difference	in	the	inner	path	model	(factor	4).	We	use	five	
manifest	variables	for	construct	measurement	and	all	loadings	exhibit	the	same	level.	
This	kind	of	structural	equation	model	has	previously	been	reported	in	FIMIX-PLS	
studies	(e.g.,	Ringle	(2006)),	and	in	covariance-based	finite	mixture	structural	equation	
modeling	(Jedidi,	Jagpal,	and	DeSarbo	(1997b)).

	 The	complex	model	(Figure A3,	Appendix)	uses	three	exogenous	latent	variables		
(ξ1, ξ2,	and	ξ3),	three	endogenous	latent	variables	(η1, η2,	and	η3),	and	six	inner	
model	path	relations	(with	coefficients γ11, γ21, γ22, γ32, β13,	and	β23).	The	parameter	
prespecification	to	generate	the	experimental	data	is	analogous	to	the	previous	model.	
A	specific	group	of	data	has	a	few	specifically	strong	relations	in	the	inner	model,	but	
all	other	paths	remain	at	a	lower	level.	Since	the	number	of	free	parameters	in	the	
complex	model	increases	considerably	compared	to	those	of	the	less	complex	structural	
equation	model,	we	expect	lower	success	rates	in	the	complex	model.

Factor6:	Relative	segment	sizes	[balanced,	unbalanced].
	 In	past	simulation	studies,	researchers	evaluated	the	effect	of	segment	sizes	on	criteria	

performance	(Hawkins,	Allen,	and	Stromberg	(2001);	Andrews	and	Currim	(2003a;	
2003c);	Sarstedt	(2008a)).	This	factor	is	critically	important	for	PLS	segmenta-
tion	methods,	since	Esposito	Vinzi	et	al.	(2007)	show	that	the	other	prominent	
approach	to	response-based	segmentation	in	PLS,	PLS-TPM,	which	has	been	
further	developed	into	REBUS-PLS	(Esposito	Vinzi	et	al.	(2008)),	cannot	handle	
unbalanced	segments.	FIMIX-PLS	however	performs	as	expected	in	almost	all	data	
constellations.	We	choose	two	factor	levels,	balanced	and	unbalanced.	The	balanced	
factor	level	is	connected	with	equally	sized	segments	(50%/50%	in	the	case	of	two	
segments;	25%/25%/25%/25%	in	the	case	of	four	segments).	The	unbalanced	factor	
level	characterizes	the	existence	of	one	segment	that	is	considerably	larger	than	the	
other	segments	(80%/20%	in	the	case	of	two	segments;	55%/15%/15%/15%	in	
the	case	of	four	segments).	Hawkins,	Allen,	and	Stromberg	(2001)	and	Sarstedt	
(2008b)	evaluate	similar	situations	in	their	simulation	studies.	Further,	several	
empirical	studies	(e.g.,	Scheer	(2008);	Sarstedt	and	Ringle	(2010))	report	these	
conditions.	Although	previous	studies	account	for	a	minimum	segment	size	of	5%	
for	the	smallest	segment	(Andrews	and	Currim	(2003a;	2003c)),	this	level	is	not	
feasible	in	our	study,	because	the	smallest	sample	size	of	100	would	not	produce	
sufficiently	large	niche	segments	to	successfully	apply	the	FIMIX-PLS	algorithm.	In	



Unobserved Heterogeneity

sbr 63  January 2011  34-62 43

the	light	of	Esposito	Vinzi	et	al.’s	(2007)	findings,	we	assume	that	the	performance	
of	the	criteria	only	declines	slightly,	if	at	all,	with	unbalanced	relative	segments	sizes	
than	with	balanced	segment	sizes.

We	generate	data	sets	for	each	possible	combination	of	factor	levels.	Since	there	are	six	
factors	with	two	levels,	this	adds	up	to 26 = 64	factor	level	combinations.

Computational	experiments	on	structural	equation	models	require	the	generation	of	
data	for	indicator	variables.	After	estimating	the	model,	these	data	meet	both	the	rela-
tions’	pre-specified	parameters	in	the	structural	model	and	in	the	measurement	models.	
In	covariance	structure	analysis,	there	are	two	different	approaches	that	are	appropriate	
for	obtaining	such	data.	One	approach	calculates	the	indicator	variables’	implied	covari-
ance	matrix	for	given	values	of	the	parameters	in	the	model	and	generates	data	from	a	
multivariate	distribution	that	fits	this	covariance	matrix.	The	second	approach	requires	the	
latent	variables’	scores	in	keeping	with	the	specified	relations	in	the	structural	model,	after	
which	data	are	generated	for	the	observed	variables	in	accordance	with	the	measurement	
models’	pre-specified	parameters.	The	latter	approach	allows	the	researcher	to	obtain	data	
with	certain	distributional	characteristics,	as	implied	by	the	model	(Mattson	(1997)).	Only	
a	few	Monte	Carlo	simulation	studies	and	computational	experiments,	which	require	arti-
ficial	data	for	pre-specified	parameters,	have	been	presented	for	PLS	path	modeling	thus	
far	(e.g.,	Chin,	Marcolin,	and	Newsted	(2003);	Reinartz,	Haenlein,	and	Henseler	(2009);	
Ringle,	Sarstedt,	and	Schlittgen	(2009);	Henseler	and	Chin	(2010)).	All	of	these	studies	
use	the	second	CBSEM	data	generation	approach,	which	we	also	apply	in	this	research3.	

4.2 MoDel	estiMation	anD	evaluation

This	 study	applies	 the	FIMIX-PLS	method	by	using	 the	 software	application	Smart-
PLS	2.0 (M3)	 (Ringle,	Wende,	 and	Will	 (2005b)).	To	 identify	 the	appropriate	num-
ber	of	segments,	we	test	alternative	segment	number	solutions	for	each	factor	constel-
lation.	If	the	set	of	artificially	generated	data	consists	of	two	(four)	segments,	then	in	
this	analysis	we	draw	on	FIMIX-PLS	solutions	for	one	through	six	(one	through	eight)	
segments.	We	save	the	results	for	the	FIMIX-PLS	runs	with	different	numbers	of	seg-
ments	per	factor	constellation.	

Owing	 to	 the	possible	 convergence	of	 the	EM	algorithm	 in	 local	optimum	solutions	
(Wu	(1983)),	each	FIMIX-PLS	analysis	uses	30	replications.	To	avoid	premature	con-
vergence,	 we	 only	 truncate	 the	 FIMIX-PLS	 algorithm	 when	 the	 improvement	 δ	 of	
the	 log-likelihood	 is	 under	 the	 threshold	 value	 of	 1	∙	10-15,	 or	 the	 maximum	 number	
of	30,000	iterations	 is	attained.	In	all	cases,	 the	δ	criterion	terminates	the	algorithm,	
indicating	that	the	stop	criterion	parameter	has	been	set	at	a	sufficiently	 low	level,	as	
demanded	by	Wedel	and	Kamakura	(2000).	Moreover,	to	ensure	the	robustness	of	the	

3	 The	authors	would	like	to	thank	Rainer	Schlittgen	(Institute	of	Statistics	and	Econometrics,	University	of	Ham-
burg,	Von-Melle-Park	5,	20146	Hamburg,	Germany,	rainer.schlittgen@uni-hamburg.de)	for	sharing	his	GAUSS	
programs	for	PLS	data	generation	(Ringle	and	Schlittgen	(2007))	with	them.	
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results	in	this	study,	we	include	an	analysis	of	30	different	artificially	generated	sets	of	
data	for	each	of	the	64	factor-level	combinations.	

Testing	 alternative	 numbers	 of	 latent	 classes	 with	 30	 replications	 each	 requires	 two	
kinds	of	 evaluation	 to	determine	a	FIMIX-PLS	 solution.	First,	we	 select	 the	best	 so-
lution	 in	 terms	of	 the	30	 replications’	 log-likelihood	values.	Second,	we	compare	 the	
model	selection	criteria	for	these	best	FIMIX-PLS	solutions	across	the	one	through	six	
(one	through	eight)	alternative	segment	solutions	per	factor	constellation.	We	conduct	
this	procedure	 for	 all	 30	 alternative	 artificially	 generated	 sets	per	 factor	 constellation	
that	become	part	of	the	final	results	presentation.	Finally,	for	each	criterion,	we	com-
pute	 the	 percentages	 of	 data	 sets,	 identifying	 the	 true	 number	 of	 segments	 (i.e.,	 the	
success	rate;	Table 1).	In	total,	we	draw	on	32	x	6	x	30	x	30	(two	segments)	+	32	x	8	x	
30	x	30	(four	segments)	= 403,200	FIMIX-PLS	runs.	The	best	solution	for	each	of	the	
18	FIMIX-PLS	selection	criteria	from	30	replications	becomes	part	of	the	results	pre-
sentation	of	this	study’s	computational	experiments.	Consequently,	this	study	includes	
403,200	/	30	x	18	= 241,920	model	selections.	

4.3	 Results	analysis	anD	Discussion

The	results	in	Table 1	illustrate	the	average	success	rates	(S)	for	each	criterion	and	the	
rates	for	underfitting	(U)	and	overfitting	(O)	(Andrews	and	Currim	(2003a;	2003c)).	
For	example,	BIC	identifies	the	true	number	of	segments	in	47%	of	all	simulation	runs	
in	which	the	sample	size	is	held	constant	at	N = 100	and	all	other	factors	are	varied	
according	 to	 the	 factor	 levels	described	above.	At	 this	 factor	 level,	BIC	overestimates	
(underestimates)	the	true	number	of	segments	in	6%	(47%)	of	all	simulation	runs	(e.g.,	
the	criterion	pointed	at	the	three-	to	six-segment	solution	where S = 2	and	at	the	five-	
to	eight-segment-solution	where	S = 4).	

The	results	show	that	AIC4	is	the	best	information	criterion	to	use	with	a	large	variety	
of	 data	 configurations.	 With	 an	 overall	 success	 rate	 of	 58%,	 AIC4	 proves	 to	 be	 ad-
vantageous,	particularly	in	more	complex	model	set-ups	(74%).	BIC	also	performs	well	
(overall	success	rate,	57%),	especially	when	analyzing	models	using	a	higher	number	of	
observations	(73%)	and	more	distinct	 segment-specific	path	coefficients	 (88%).	Simi-
larly,	CAIC	and	HQ	perform	favorably	with	success	rates	of	55%.	PE,	PC,	AIC3,	NFI,	
and	MDL2	achieve	significantly	lower	overall	success	rates	between	39%	and	45%.	All	
other	criteria	(AIC,	AICc,	MDL5,	lnLc,	NEC,	ICL-BIC,	AWE,	CLC,	and	EN)	exhibit	
very	 unsatisfactory	 success	 rates	 of	 28%	 and	 lower.	 AIC	 achieved	 the	 worst	 perfor-
mance	of	only	6%.	

With	overfitting	quotas	of	more	 than	80%,	 the	 three	criteria	AIC,	AICc,	and	EN	have	
a	 propensity	 to	 overestimate	 the	 true	 number	 of	 segments.	 In	 contrast	 to	 this	 finding,	
MDL5,	lnLc,	ICL-BIC,	and	AWE	exhibit	a	strong	tendency	to	underestimate	the	prespec-
ified	number	of	segments	with	underfitting	quotas	of	at	 least	77%.	Consequently,	these	
criteria	should	be	used	in	cases	in	which	an	overestimation	must	be	avoided	at	all	costs.	
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Of	the	criteria	with	the	highest	success	rates,	BIC	and	CAIC	show	a	clear-cut	under-
fitting	 tendency,	while	 AIC4	 and	HQ	provide	 results	 in	 both	over-	 and	underfitting	
directions.	Only	AIC3	has	a	relatively	high	success	rate	(43%)	and	a	very	strong	overfit-
ting	tendency.	Tables 2	and	3	provide	a	detailed	analysis	of	these	criteria,	separated	into	
a	one-	through	six-segment	solution	(for	S = 2;	Table 2)	and	a	one-	through	eight-seg-
ment	solution	(for	S = 4;	Table 3),	respectively�.	The	results	indicate	that	for	S = 4	
(Table 3),	both	BIC	and	CAIC	either	match	or	clearly	underestimate	the	correct	num-
ber	of	segments.	In	contrast,	AIC3	either	matches	the	prespecified	number	of	segments	
or	 tends	 to	 strongly	overestimate	 the	 correct	number	of	 segments.	Finally,	AIC4	 and	
HQ	show	a	more	or	less	equal	distribution	in	the	number	of	segments	with	which	this	
criterion	over-	and	underfits	the	correct	number	of	segment.	

In	 view	 of	 these	 findings,	 we	 combine	 the	 criteria	 with	 high	 success	 rates	 and	 pro-
nounced	 tendencies	 to	 over-	 and	 underestimate	 the	 correct	 number	 of	 segments.	 In	
about	one	third	(31%)	of	all	cases,	AIC3	and	CAIC	simultaneously	indicate	the	correct	
number	of	segments.	Likewise,	in	6%	of	all	cases,	both	criteria	indicate	the	same,	in-
correct,	number	of	segments.	Thus,	whenever	AIC3	and	CAIC	indicate	the	same	num-
ber	of	segments,	this	result	meets	the	correct	number	of	segments	in	84%	of	all	cases.	
Alternatively,	 a	 joint	 consideration	of	AIC3	and	BIC	appears	promising,	because	 this	
combination	yields	the	true	number	of	segments	in	82%	of	all	cases	where	both	criteria	
indicate	the	same	number	of	segments.	

Overall,	the	success	rates	of	the	criteria	generally	increase	with	lower	numbers	of	seg-
ments,	more	observations,	higher	differences	between	 the	 segment-specific	path	coef-
ficients,	and	smaller	disturbance	terms.	Even	though	we	would	expect	the	model	selec-
tion	criteria’s	performance	to	decline	with	unbalanced	relative	segment	sizes,	the	perfor-
mance	remains	at	levels	that	are	similar	to	those	in	situations	of	equally	sized	segments.	
This	 result	provides	 support	 for	FIMIX-PLS’	exceptionally	high	degree	of	 robustness	
in	respect	of	this	factor	(Esposito	Vinzi	et	al.	(2007)).	Furthermore,	although	we	might	
suppose	 that	more	complex	path	models	would	 lead	to	a	decline	 in	performance,	 the	
results	of	the	computational	experiments	clearly	show	that	the	model	selection	criteria	
perform	better	 in	 the	more	 complex	path	model	 constellation.	Andrews	 and	Currim	
(2003a)	report	a	similar	result	in	their	study	on	mixture	logit	models	and	surmise	that	
less	complex	models	provide	a	better	fit,	thus	leaving	less	opportunity	for	improvement	
in	 fit	 by	 increasing	 the	number	of	 segments.	The	 same	 reason	holds	 in	our	 study.	A	
detailed	analysis	shows	that	for	S = 1,	the	lnL	value	computed	across	all	the	factor	lev-
els	is	almost	three	times	higher	in	the	complex	model	than	in	the	simple	model.	This	
difference	is	also	more	pronounced	in	a	one-segment	solution	than	in	higher-segment	
solutions	in	the	complex	model.

To	 further	 examine	 the	 results	 of	 this	 study,	we	determine	 the	 effects	of	 the	 simu-
lation	 design’s	 factors	 on	 the	 criteria	 success	 rates.	 Therefore,	 we	 meta-analyze	 the	
results	of	the	criteria	by	fitting	multinomial	logistic	regression	models	to	the	success	

4	 The	remaining	criteria’s	detailed	analysis	results	are	available	online	at	http://www.smartpls.de/sbr-app1.pdf.
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Table1: Success(S),underfitting(U)andoverfitting(O)ratesofthecriteria

  AIC AIC3 AIC4 AICc BIC CAIC
  U S o U S o U S o U S o U S o U S o

Factor 1: 

# segments

2 0% 8% 92% 5% 49% 46% 17% 65% 18% 1% 20% 79% 27% 69% 4% 30% 68% 2%

4 0% 5% 95% 8% 38% 54% 35% 50% 14% 1% 12% 87% 53% 45% 2% 56% 42% 2%
Factor 2: 

# observations

100 0% 6% 94% 6% 36% 57% 31% 47% 22% 1% 22% 77% 47% 47% 6% 50% 46% 4%

400 0% 6% 94% 7% 48% 46% 20% 69% 11% 1% 10% 89% 26% 73% 1% 28% 72% 1%
Factor 3: 

disturbance term

10% 0% 5% 95% 3% 48% 49% 18% 66% 16% 0% 15% 85% 29% 68% 3% 31% 67% 2%

25% 0% 7% 92% 10% 39% 51% 34% 49% 16% 2% 17% 81% 51% 46% 3% 54% 44% 2%
Factor 4: 

Path distance

0.75 0% 8% 92% 0% 51% 49% 1% 80% 19% 0% 19% 81% 9% 88% 4% 11% 87% 2%

0.25 0% 5% 95% 14% 36% 50% 51% 35% 14% 2% 14% 85% 71% 26% 3% 75% 23% 2%
Factor 5: 

Model complexity

simple 0% 3% 97% 6% 22% 71% 32% 41% 26% 1% 5% 94% 53% 44% 3% 55% 43% 2%

complex 0% 10% 90% 8% 64% 28% 20% 74% 6% 1% 27% 73% 27% 70% 3% 30% 67% 3%
Factor 6: 

segment sizes

balanced 0% 6% 94% 7% 42% 51% 26% 58% 16% 1% 16% 83% 37% 60% 4% 39% 59% 2%

unbalanced 0% 7% 93% 7% 46% 46% 27% 56% 17% 1% 16% 84% 47% 51% 2% 50% 48% 2%
Overall 0% 6% 93% 7% 43% 50% 26% 58% 16% 1% 16% 83% 40% 57% 3% 43% 55% 2%

  HQ MDL2 MDL5 lnLc NEC* ICL-BIC
  U S o U S o U S o U S o U S o U S o

Factor 1: 

# segments

2 11% 61% 29% 44% 54% 2% 61% 39% 0% 49% 22% 28% 0% 45% 55% 74% 25% 1%

4 30% 50% 20% 76% 24% 0% 93% 7% 0% 61% 5% 34% 25% 11% 64% 88% 11% 1%
Factor 2: 

# observations

100 20% 43% 37% 74% 24% 2% 89% 11% 0% 36% 5% 58% 6% 18% 76% 80% 17% 2%

400 18% 66% 16% 44% 56% 0% 61% 39% 0% 75% 16% 9% 17% 34% 49% 81% 19% 0%
Factor 3: 

disturbance term

10% 14% 62% 23% 49% 49% 1% 69% 31% 0% 46% 18% 36% 14% 36% 50% 75% 24% 1%

25% 26% 48% 26% 71% 28% 1% 84% 16% 0% 64% 9% 27% 11% 19% 69% 87% 12% 1%
Factor 4: 

Path distance

0.75 0% 74% 26% 30% 69% 1% 56% 44% 0% 41% 23% 37% 19% 45% 36% 63% 35% 2%

0.25 40% 37% 23% 90% 9% 1% 97% 3% 0% 70% 5% 26% 6% 10% 84% 100% 0% 0%
Factor 5: 

Model complexity

simple 24% 37% 39% 71% 29% 0% 85% 15% 0% 68% 8% 24% 3% 19% 78% 99% 0% 0%

complex 17% 74% 10% 49% 49% 2% 68% 32% 0% 43% 19% 38% 22% 36% 42% 63% 35% 2%
Factor 6: 

segment sizes

balanced 19% 55% 26% 59% 40% 1% 75% 25% 0% 56% 11% 33% 12% 26% 62% 81% 18% 1%

unbalanced 23% 56% 21% 62% 37% 1% 81% 19% 0% 54% 19% 27% 15% 31% 55% 82% 17% 1%
Overall 20% 55% 24% 60% 39% 1% 77% 23% 0% 55% 14% 31% 13% 28% 60% 81% 18% 1%

  PC* NFI* PE* AWE CLC EN*
  U S o U S o U S o U S o U S o U S o

Factor 1: 

# segments

2 0% 85% 15% 0% 79% 21% 0% 89% 11% 67% 33% 0% 50% 22% 28% 0% 15% 85%

4 91% 2% 7% 89% 3% 8% 93% 2% 5% 95% 3% 1% 79% 7% 14% 6% 5% 89%
Factor 2: 

# observations

100 44% 39% 17% 42% 34% 23% 45% 41% 13% 87% 12% 0% 55% 4% 41% 4% 6% 90%

400 49% 47% 5% 48% 43% 9% 49% 48% 3% 75% 23% 2% 74% 19% 7% 3% 5% 91%
Factor 3: 

disturbance term

10% 47% 45% 7% 47% 42% 11% 48% 47% 5% 75% 24% 2% 53% 20% 27% 3% 12% 85%

25% 44% 42% 14% 42% 40% 18% 45% 44% 11% 87% 12% 0% 75% 9% 16% 3% 8% 88%
Factor 4: 

Path distance

0.75 50% 47% 3% 49% 45% 6% 50% 48% 3% 63% 36% 2% 41% 26% 33% 2% 13% 85%

0.25 41% 40% 18% 40% 37% 24% 43% 43% 14% 100% 0% 0% 87% 3% 10% 4% 7% 88%
Factor 5: 

Model complexity

simple 43% 42% 15% 42% 38% 20% 44% 43% 12% 92% 8% 0% 81% 7% 11% 5% 8% 87%

complex 48% 46% 6% 47% 44% 9% 49% 47% 4% 70% 28% 2% 47% 22% 31% 2% 12% 86%
Factor 6: 

segment sizes

balanced 46% 43% 11% 45% 39% 16% 47% 45% 8% 81% 18% 1% 65% 11% 24% 3% 6% 91%

unbalanced 44% 46% 10% 43% 45% 12% 46% 47% 8% 81% 19% 0% 63% 21% 15% 2% 19% 79%
Overall 46% 44% 11% 44% 41% 15% 47% 45% 8% 81% 18% 1% 64% 15% 21% 3% 10% 87%
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Table1: Success(S),underfitting(U)andoverfitting(O)ratesofthecriteria

  AIC AIC3 AIC4 AICc BIC CAIC
  U S o U S o U S o U S o U S o U S o

Factor 1: 

# segments

2 0% 8% 92% 5% 49% 46% 17% 65% 18% 1% 20% 79% 27% 69% 4% 30% 68% 2%

4 0% 5% 95% 8% 38% 54% 35% 50% 14% 1% 12% 87% 53% 45% 2% 56% 42% 2%
Factor 2: 

# observations

100 0% 6% 94% 6% 36% 57% 31% 47% 22% 1% 22% 77% 47% 47% 6% 50% 46% 4%

400 0% 6% 94% 7% 48% 46% 20% 69% 11% 1% 10% 89% 26% 73% 1% 28% 72% 1%
Factor 3: 

disturbance term

10% 0% 5% 95% 3% 48% 49% 18% 66% 16% 0% 15% 85% 29% 68% 3% 31% 67% 2%

25% 0% 7% 92% 10% 39% 51% 34% 49% 16% 2% 17% 81% 51% 46% 3% 54% 44% 2%
Factor 4: 

Path distance

0.75 0% 8% 92% 0% 51% 49% 1% 80% 19% 0% 19% 81% 9% 88% 4% 11% 87% 2%

0.25 0% 5% 95% 14% 36% 50% 51% 35% 14% 2% 14% 85% 71% 26% 3% 75% 23% 2%
Factor 5: 

Model complexity

simple 0% 3% 97% 6% 22% 71% 32% 41% 26% 1% 5% 94% 53% 44% 3% 55% 43% 2%

complex 0% 10% 90% 8% 64% 28% 20% 74% 6% 1% 27% 73% 27% 70% 3% 30% 67% 3%
Factor 6: 

segment sizes

balanced 0% 6% 94% 7% 42% 51% 26% 58% 16% 1% 16% 83% 37% 60% 4% 39% 59% 2%

unbalanced 0% 7% 93% 7% 46% 46% 27% 56% 17% 1% 16% 84% 47% 51% 2% 50% 48% 2%
Overall 0% 6% 93% 7% 43% 50% 26% 58% 16% 1% 16% 83% 40% 57% 3% 43% 55% 2%

  HQ MDL2 MDL5 lnLc NEC* ICL-BIC
  U S o U S o U S o U S o U S o U S o

Factor 1: 

# segments

2 11% 61% 29% 44% 54% 2% 61% 39% 0% 49% 22% 28% 0% 45% 55% 74% 25% 1%

4 30% 50% 20% 76% 24% 0% 93% 7% 0% 61% 5% 34% 25% 11% 64% 88% 11% 1%
Factor 2: 

# observations

100 20% 43% 37% 74% 24% 2% 89% 11% 0% 36% 5% 58% 6% 18% 76% 80% 17% 2%

400 18% 66% 16% 44% 56% 0% 61% 39% 0% 75% 16% 9% 17% 34% 49% 81% 19% 0%
Factor 3: 

disturbance term

10% 14% 62% 23% 49% 49% 1% 69% 31% 0% 46% 18% 36% 14% 36% 50% 75% 24% 1%

25% 26% 48% 26% 71% 28% 1% 84% 16% 0% 64% 9% 27% 11% 19% 69% 87% 12% 1%
Factor 4: 

Path distance

0.75 0% 74% 26% 30% 69% 1% 56% 44% 0% 41% 23% 37% 19% 45% 36% 63% 35% 2%

0.25 40% 37% 23% 90% 9% 1% 97% 3% 0% 70% 5% 26% 6% 10% 84% 100% 0% 0%
Factor 5: 

Model complexity

simple 24% 37% 39% 71% 29% 0% 85% 15% 0% 68% 8% 24% 3% 19% 78% 99% 0% 0%

complex 17% 74% 10% 49% 49% 2% 68% 32% 0% 43% 19% 38% 22% 36% 42% 63% 35% 2%
Factor 6: 

segment sizes

balanced 19% 55% 26% 59% 40% 1% 75% 25% 0% 56% 11% 33% 12% 26% 62% 81% 18% 1%

unbalanced 23% 56% 21% 62% 37% 1% 81% 19% 0% 54% 19% 27% 15% 31% 55% 82% 17% 1%
Overall 20% 55% 24% 60% 39% 1% 77% 23% 0% 55% 14% 31% 13% 28% 60% 81% 18% 1%

  PC* NFI* PE* AWE CLC EN*
  U S o U S o U S o U S o U S o U S o

Factor 1: 

# segments

2 0% 85% 15% 0% 79% 21% 0% 89% 11% 67% 33% 0% 50% 22% 28% 0% 15% 85%

4 91% 2% 7% 89% 3% 8% 93% 2% 5% 95% 3% 1% 79% 7% 14% 6% 5% 89%
Factor 2: 

# observations

100 44% 39% 17% 42% 34% 23% 45% 41% 13% 87% 12% 0% 55% 4% 41% 4% 6% 90%

400 49% 47% 5% 48% 43% 9% 49% 48% 3% 75% 23% 2% 74% 19% 7% 3% 5% 91%
Factor 3: 

disturbance term

10% 47% 45% 7% 47% 42% 11% 48% 47% 5% 75% 24% 2% 53% 20% 27% 3% 12% 85%

25% 44% 42% 14% 42% 40% 18% 45% 44% 11% 87% 12% 0% 75% 9% 16% 3% 8% 88%
Factor 4: 

Path distance

0.75 50% 47% 3% 49% 45% 6% 50% 48% 3% 63% 36% 2% 41% 26% 33% 2% 13% 85%

0.25 41% 40% 18% 40% 37% 24% 43% 43% 14% 100% 0% 0% 87% 3% 10% 4% 7% 88%
Factor 5: 

Model complexity

simple 43% 42% 15% 42% 38% 20% 44% 43% 12% 92% 8% 0% 81% 7% 11% 5% 8% 87%

complex 48% 46% 6% 47% 44% 9% 49% 47% 4% 70% 28% 2% 47% 22% 31% 2% 12% 86%
Factor 6: 

segment sizes

balanced 46% 43% 11% 45% 39% 16% 47% 45% 8% 81% 18% 1% 65% 11% 24% 3% 6% 91%

unbalanced 44% 46% 10% 43% 45% 12% 46% 47% 8% 81% 19% 0% 63% 21% 15% 2% 19% 79%
Overall 46% 44% 11% 44% 41% 15% 47% 45% 8% 81% 18% 1% 64% 15% 21% 3% 10% 87%

* Factor 1: number of segments; Factor 2: number of observations; Factor 3: disturbance term; Factor 4: distance 
between segment-specific path coefficients; Factor 5: Model complexity; Factor 6: relative segment sizes.

 by its formal definition (Table A1, Appendix), the criterion does not provide reasonable results for the one-segment 
solution.
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Table2: Detailedanalysisofselectedcriteria(S=2)
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Table3: Detailedanalysisofselectedcriteria (S =4)
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data.	We	code	the	dependent	variable	as	–1,	the	criterion	underestimated	the	correct	
number	of	segments;	0,	the	criterion	identified	the	correct	number	of	segments	(ref-
erence	category);	and	1,	the	criterion	overestimated	the	correct	number	of	segments.	
Following	Andrews	 and	Currim	 (2003a)	 and	Andrews	 and	Currim	 (2003c),	we	 fit	
separate	logistic	models	to	the	data	of	each	of	the	criteria.	Table 4	shows	the	resulting	
parameter	estimates	for	the	five	criteria	AIC3,	AIC4,	BIC,	CAIC,	and	HQ,	discussed	
above�.	 The	 results	 indicate	 whether	 the	 explanatory	 variables	 increase	 or	 decrease	
the	log	odds	of	underestimating	(dependent	equals	–1)	or	overestimating	(dependent	
equals	1)	the	correct	number	of	segments.	

For	example,	in	the	case	of	AIC4,	increasing	the	error	variance	–	that	is,	switching	from	
the	 reference	category	 (disturbance	 term	=	10%)	 to	 the	higher	category	 (disturbance	
term	=	25%)	–	increases	the	log	odds	of	under-	or	overestimating	the	correct	number	
of	segments,	which	is	mirrored	in	the	positive	β	coefficients	(1.95	for	underestimations	
and	 0.61	 for	 overestimation).	 Similarly,	 because	 both	β	 coefficients	 are	 negative,	 in-
creasing	 the	distance	between	 segment-specific	path	coefficients	 from	0.25	 (reference	
category)	 to	0.75	decreases	 the	 log	odds	of	misspecifying	 the	 correct	number	of	 seg-
ments.	Overall,	increasing	the	number	of	observations,	the	distance	between	segment-
specific	path	coefficients,	or	model	complexity	increases	the	log	odds	of	estimating	the	
true	number	of	segments.	We	note	that	the	influence	of	relative	segment	size	is	small	
(but	 mostly	 significant	 in	 the	 case	 of	 overestimation),	 which	 is	 also	 mirrored	 in	 the	
somewhat	inconsistent	descriptive	results	of	this	factor	(Table 1).	

5 sUMMary and concLUsion

In	PLS	path	modeling	applications,	uncovering	and	treating	unobserved	heterogeneity	
is	critical	to	the	quality	of	the	result	presentations	and	interpretations	(Rigdon,	Ringle,	
and	Sarstedt	 (2010)).	This	 important	 issue	 should	be	a	matter	of	concern	when	eval-
uating	 any	 PLS	 path	 modeling	 results	 (Ringle,	 Sarstedt,	 and	 Mooi	 (2010);	 Sarstedt,	
Schwaiger,	 and	 Ringle	 (2009);	 Hair,	 Ringle,	 and	 Sarstedt	 (2011)).	 Sarstedt’s	 (2008a)	
review	of	approaches	to	response-based	segmentation	within	a	PLS	framework	reveals	
that	FIMIX-PLS	(Hahn	et	al.	(2002))	is	the	primary	method	in	this	respect�.

Answering	the	call	 for	a	 further	evaluation	of	 the	problematic	aspects	of	 the	FIMIX-
PLS	approach	when	it	was	initially	presented	by	Hahn	et	al.	(2002),	and	in	subsequent	
studies	 on	 computational	 experiments	 and	 in	 empirical	 applications	 (Esposito	 Vinzi	
et	 al.	 (2007);	 Ringle,	 Sarstedt,	 and	 Mooi	 (2010);	 Ringle,	 Wende,	 and	 Will	 (2010);	
Sarstedt	 and	 Ringle	 (2010);	 Sarstedt,	 Schwaiger,	 and	 Ringle	 (2009)),	 in	 this	 paper	
we	 address	 the	 problem	 of	 model	 selection	 by	 providing	 a	 comprehensive	 evaluation	
of	18	different	model	selection	criteria	in	the	context	of	FIMIX-PLS.	Despite	FIMIX-
PLS’	frequent	application	in	recent	research	work,	the	question	of	how	many	segments	

5	 The	analysis	results	of	all	the	remaining	criteria	are	available	online	at	http://www.smartpls.de/sbr-app1.pdf
6	 The	technique	has	been	implemented	in	the	SmartPLS	software	application	(Ringle,	Sarstedt,	and	Schlittgen	

(2005b)),	and	hence,	is	generally	available	for	PLS	path	modeling	applications.
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Table4: Metaanalysisofbest-performingcriteria:Multinomiallogisticregression
results

AIC3 AIC4 BIC CAIC HQ

dependent reference 
category β β β β β

–1 
 

under-
estimation

Factor 1: 
# segments 

2 0.84 1.94 4.66 5.08 1.89

Factor 2: 
# observations 

100 –0.41 ns –1.71 –4.37 –4.70 –1.00

Factor 3 : 
disturbance 
term

10% 1.58 1.95 4.10 4.43 1.50

Factor 4: 
Path distance 

0.25 –24.16 –5.89 –9.29 –9.58 –6.51

Factor 5: 
Model 
complexity 

low –1.07 –2.14 –4.94 –4.62 –1.80

Factor 6: 
segment sizes

un-
balanced

0.25 ns 0.68 0.38 ns 0.21 ns 0.22 ns

intercept –1.66 –0.15 ns 2.20 2.66 –0.43 ns

1 
 

over-
estimation

Factor 1: 
# segments 

2 0.55 0.27 ns 0.95 ns 2.63 0.02 ns

Factor 2: 
# observations 

100 –0.67 –1.43 –2.85 –4.24 –1.63

Factor 3 : 
disturbance 
term

10% 0.35 0.61 1.35 2.28 0.58

Factor 4: 
Path distance 

0.25 –0.49 –1.17 –2.81 –5.02 –1.03

Factor 5: 
Model 
complexity 

low –2.08 –2.34 –1.81 –1.83 –2.42

Factor 6: 
segment sizes

un-
balanced

0.59 0.57 1.37 1.01 ns 1.05

intercept 0.87 0.08 ns –1.30 –1.08 ns 0.32 ns

-2 logL 403.27 448.53 333.11 293.10 452.69

%correct 68.3 76.6 94.8 95.1 71.6

ns = nonsignificant; all others are significant at p ≤ 0.01.
Factor 1: number of segments; Factor 2: number of observations; Factor 3: disturbance term;  
Factor 4: distance between segment-specific path coefficients; Factor 5: Model complexity; Factor 6: rela-
tive segment sizes.
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should	be	retained	from	the	data	has	hitherto	not	been	investigated	scientifically	in	this	
context.

In	 the	 overall	 results,	 AIC4	 shows	 the	 highest	 overall	 success	 rate	 of	 58%	 for	 model	
selection	in	FIMIX-PLS,	followed	by	BIC	(57%),	CAIC	(55%),	and	HQ	(55%). A	de-
tailed	result	analysis	shows	that	a	joint	consideration	of	AIC3	and	CAIC	is	very	prom-
ising,	because	these	criteria	indicate	the	correct	number	of	segments	in	84%	of	all	cases	
in	which	both	criteria	indicate	the	same	number	of	segments.	

Furthermore,	 the	 results	 show	 the	 tendency	 of	 several	 criteria	 to	 under-	 and	 overfit.	
Although	 researchers	 usually	 conclude	 that	 such	 criteria	 are	 inappropriate	 for	 model	
selection	(e.g.,	Andrews	and	Currim	(2003a;	2003c);	Henson,	Reise,	and	Kim	(2007)),	
we	believe	that	these	performances	yield	important	implications.	For	example,	if	AIC	
indicates	more	segments	than	competing	criteria,	then	due	to	its	overfitting	tendency,	
researchers	 should	 conclude	 that	 the	 appropriate	 number	 of	 segments	 to	 retain	 is	
lower	 than	actually	 indicated	by	AIC.	The	 same	holds	 for	underfitting,	 for	example,	
for	AWE	or	ICL-BIC.	However,	because	of	their	low	overall	success	rate,	these	criteria	
should	not	be	directly	used	for	model	selection,	as	was	common	in	past	research	studies	
that	considered	AIC,	amongst	others,	in	the	course	of	their	analysis	(e.g.,	Hahn	et	al.	
(2002);	Ringle	(2006);	Ringle	et	al.	(2009);	Sarstedt,	Schwaiger,	and	Ringle	(2009)).	

In	view	of	all	 the	classification	criteria’s	overall	weak	performance,	 the	entropy	con-
cept	does	not	appear	promising	for	model	selection	in	FIMIX-PLS	path	modeling.	By	
basing	the	model	 selection	decision	primarily	on	entropy-based	statistics,	 researchers	
may	misspecify	the	number	of	segments,	thus	jeopardizing	the	validity	of	their	results	
(e.g.,	the	analyses	by	Conze	(2007)	and	Scheer	(2008)	explicitly	rely	on	Ramaswamy,	
DeSarbo,	 and	 Reibstein’s	 (1993)	 entropy	 criterion).	 However,	 the	 entropy	 concept	
should	not	be	disregarded	per	 se,	 since	 it	 indicates	 the	degree	of	 separation	between	
the	segments.	This	criterion	is	critical	to	assessing	whether	the	analysis	produces	well-
separated	clusters,	which	is	important	for	deriving	management	implications	from	any	
analysis.	Thus,	researchers	may	revert	to	EN	when	its	levels	show	relatively	high	dis-
parity,	while	there	are	relatively	few	differences	in	the	information	criterion	outcomes	
of	two	to	three	consecutive	segments	that	lie	at	the	minimum	level	of	all	the	different	
numbers	of	analyzed	segments’	results.	Nevertheless,	researchers	should	rely	primarily	
on	information	criteria	when	deciding	on	the	number	of	segments	in	FIMIX-PLS.	In	
summary,	our	key	finding	and	decision	rule	are	to	use	AIC3	and	CAIC	jointly	when	
evaluating	FIMX-PLS	results.

Our	study’s	results	match	the	findings	of	Andrews	and	Currim’s	(2003c)	study	in	sev-
eral	 regards.	Both	BIC	and	CAIC	exhibit	 similar	underfitting	 rates	 (38%	 |	40%),	 as	
well	as	success	(61%	|	58%)	and	overfitting	rates	(1%	|	1%)	compared	to	those	of	our	
study	(40%	|	43%,	57%	|	55%,	and	3%	|	2%).	However,	although	AIC3	performed	best	
overall	in	Andrews	and	Currim’s	(2003c)	study,	its	performance	is	only	average	in	our	
study.	Further,	AIC	performs	much	worse	in	our	study,	which	more	closely	resembles	
the	 results	 reported	by	Hawkins,	Allen,	 and	Stromberg	 (2001)	 and	Sarstedt	 (2008b).	
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Compared	to	those	of	Andrews	and	Currim	(2003c),	the	success	rates	in	our	study	are	
generally	lower	and	show	a	greater	variance	across	the	criteria.	This	result	is	due	to	the	
factor	levels	chosen,	the	FIMIX-PLS	method’s	different	properties	and	because	in	our	
study	we	consider	a	greater	number	of	criteria.	When	we	more	closely	compare	the	two	
studies’	 simulation	designs,	 the	reason	 for	 this	divergence	becomes	obvious.	Andrews	
and	 Currim	 (2003c)	 choose	 extremely	 high	 levels	 of	 mean	 separation	 between	 seg-
ment-specific	parameters,	but	 these	 levels	do	not	 reflect	actual	applications	of	 regres-
sion-based	mixture	models	well.	In	line	with	prior	applications	of	FIMIX-PLS,	in	our	
research	we	use	a	minimum	path	coefficient	separation	level	of	0.25,	which	strongly	in-
fluences	the	criteria’s	overall	performance.	The	average	success	rate	of	the	criteria	at	this	
factor	level	is	a	mere	18%	our	study,	compared	to	47%	in	that	of	Andrews	and	Currim	
(2003c),	who	specify	a	minimum	mean	separation	level	of	0.5.

Our	study	investigates	only	the	ability	of	the	criteria	to	determine	the	correct	number	of	
segments,	but	it	does	not	consider	the	quality	of	the	parameter	recovery.	However,	we	
could	argue	that	in	a	situation	with	an	increased	number	of	segments	in	which	the	majority	
of	observations	are	classified	correctly	and	which	includes	a	favorable	parameter	recovery	
in	some	segments,	is	preferable	to	a	second	situation	in	which	the	number	of	segments	is	
correct	but	the	parameters	are	biased.	This	conflict	between	segment	and	parameter	recovery	
has	not	yet	been	thoroughly	addressed	in	the	academic	literature	and	a	preference	for	either	
one	or	another	aspect	depends	on	the	researcher’s	subjective	considerations.	

Future	research	should	continue	to	search	for	better	model	selection	criteria.	Research	
in	 this	 field	 requires	 additional	 elaborations	 to	 integrate	 the	 costs	 of	 a	 wrong	 model	
selection	decision	into	the	measures	by	fitting	a	penalty	function.	Following	Andrews	
and	Currim’s	(2003a)	argument,	managers	must	be	enabled	to	consider	the	costs	and	
benefits	(in	monetary	units)	of	under-	or	overestimating	the	true	number	of	segments.	
Research	should	also	evaluate	the	role	of	additional	data	characteristics	commonly	en-
countered	in	empirical	studies,	such	as	missing	values	and	multicollinearity.	Further	as-
sessments	of	the	data	characteristics’	influence	on	model	selection	criteria	performance	
would	prove	valuable	for	developing	new	criteria	specifically	suited	for	the	application	
of	FIMIX-PLS	in	specific	data	constellations.
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6 aPPendiX

TableA1: Informationandclassificationcriteriaconsideredinthestudy

Criterion Description Reference
InformationCriteria

Akaike information Criterion AIC = –2 ∙ lnL + 2 ∙ Ns Akaike (1973)

small sample AiC AICc = AIC + [2 ∙ (Ns + 1)∙ (Ns + 2)]/(N – Ns – 1) Hurvich and tsai 

(1989)

Modified AiC 3 AIC3 = –2 ∙ lnL + 3 ∙ Ns bozdogan (1994)

Modified AiC 4 AIC4 = –2 ∙ lnL + 4 ∙ Ns bozdogan (1994)

bayes information Criterion BIC = –2 ∙ lnL + ln(N) ∙ Ns schwarz (1978)

Consistent AiC CAIC = –2 ∙ lnL + [ln(N) + 1] ∙ Ns bozdogan (1987)

Minimum description Length 2 MDL2 = –2 ∙ lnL + 2 ∙ ln(N) ∙ Ns Liang, Jaszczak 

and Coleman (1992)

Minimum description Length 5 MDL2 = –2 ∙ lnL + 5 ∙ ln(N) ∙ Ns Liang, Jaszczak 

and Coleman (1992)

Hannan-Quinn Criterion HQ = –2 ∙ lnL + 2 ln[ln(N)] ∙ Ns Hannan and Quinn 

(1979)

ClassificationCriteria
Complete Log-Likelihood

lnLc =  ∑ 
i=1

  
N

     ∑ 
s=1

  
N

   zisln(f(ηi|ξi,Bs, Γs, Ψs)) +  ∑ 
i=1

  
N

     ∑ 
s=1

  
N

   zisln(ρs)
dempster, Laird, 
and rubin (1977)

normalized entropy Criterion NEC = E(S) / [ln(S) – ln(1)] Celeux and soromenho 
(1996)

integrated Completed 
Likelihood-BIC

ICL – BIC = –2 ∙ lnL + [ln(N)] ∙ Ns + 2 ∙ E(S) biernacki, Celeux, 
and govaert (2000)

Partition Coefficient
 PC =   ∑ 

i=1
  

N

     ∑ 
s=1

  
N

   p2
is /N

bezdek (1981)

non-Fuzzy index
NFI = [S(  ∑ 

i=1
  

N

     ∑ 
s=1

  
S

    p2
is ) – N]/ N · (S – 1)

roubens (1978)

Partition entropy
PE = –[  ∑ 

i=1
  

N

     ∑ 
s=1

  
S

    pis  · ln pis ]/N
bezdek (1981)

Approximate Weight of evidence AWE = –2 ∙ lnLc + 2 ∙ Ns ∙ [1,5 + ln(N)] banfield and raftery (1993)

Classification Likelihood  
Criterion

CLC = –2 ∙ lnL + 2 ∙ E(S) biernacki and govaert 
(1997)

entropy Criterion
EN = 1 – [  ∑ 

i=1
  

N

     ∑ 
s=1

  
S

     – pis  · ln pis ]/Nlns
ramaswamy, desarbo, 

and reibstein (1993)

note: lnL describes the log-likelihood of the model, Ns is the number of parameters required to estimate the 
model with S segments, N is the sample size, pis is the a-posteriori probability of observation i belonging to 
segment s, zis is a 0/1 assignment variable of observation i to segment s, E(S) the estimated entropy for a model 

with S segments defined as E(S) = –  ∑ 
i=1

  
N

     ∑ 
s=1

  
S

    pis ln (pis ).
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FigureA2: SimplePLSpathmodel
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FigureA3: ComplexPLSpathmodel
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TableA4: FIMIX-PLSextensions

(1)	The	calculation	of	the	distribution	values	as	presented	by	Hahn	et	al.	(2002)	requires	
additional	clarification,	especially	for	the	somewhat	inconsistent	(and	confusing)	
namingof	variables	Equation	4	in	the	paper	by	Hahn	et	al.	(2002,	p.	249)	presents	the	
calculation	of	the	distribution	values	as	follows:

ηi =  ∑ 
s = 1

   
S

    ρs [    |Bs|
 _________  

(2π)Q/2   √
___

 |Ψs|  
   ]exp {–   1 _ 

2
  (Bsηi + Γs ξi)′ Ψ–1

s (Bsηi + Γsξi) }, (3)

	 This	equation	requires	accounting	for	Equation	1	in	Hahn	et	al.’s	paper	(2002,	p.	248)	
and	footnote	23	on	the	same	page.	Here,	the	authors	explain	that	the	inner	relations	
of	the	PLS	path	model	can	be	expressed	by:

Bηi + Γξi = ζi,    with	B = I – Bs ⋀ Γ = –Γs. (4)

	 However,	the	vector	of	residuals	ζi must	be	used	when	calculating	the	distribution	
values.	Hence,	the	original	presentation	of	Equation	4	in	the	paper	by	Hahn	et	al.	
(2002,	p.	249)	requires	the	following	clarification:

ηi =  ∑ 
s = 1

   
S

    ρk [    1
 _________  

(2π)Q/2   √
___

 |Ψs|  
   ]exp {–   1 _ 

2
  ((I – Bs)ηi +(–Γs)ξi)′ Ψ–1

s (I – Bs)ηi 

 +(–Γs)ξi)}, (5)

with	|B| = |I – Bs| = 1.

(2)	For	a	pre-specified	number	of	S	segments,	the	E-step	in	the	FIMIX-PLS	EM	algo-
rithm	computation	of	results	needs,	as	provisional	estimates,	the	weighted	least	squares	
regressions	of	the	previous	M-step.	The	(S-)	weighted	least	squares	computation	in	the	
M-step	of	the	FIMIX-PLS	EM	algorithm,	as	presented	by	Hahn	et	al.	(2002,	p.	253)	
in	equations	14	and	15,	is	erroneous.	The	original	presentation	of	these	equations	is	
given	as	follows:

τms = [ ∑ 
i=1

   
N

    pis(X′miXmi)]–1 [ ∑ 
i=1

   
N

    pis(X′miYmi)] (6)

ωms = [ ∑ 
i=1

   
N

    pis(Y mi – Xmi τms)(Y mi – Xmi τms)′ /Iρs ] (7)

However,	this	presentation	must	be	corrected	as	follows:

τms = [(X′mPsXm]–1 [X′mPsYm] (8)

ωms = [Y m  –  Xm τms)′(Y m – Xm τms)′ ]Ps]/Iρs  (9)
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Thus,	the	equations	follow	the	normal	weighted	least	squares	procedure.

(3)	An	important	issue	in	mixture	models	is	the	differentiation	between	the	likelihood	of	
the	model	from	the	observed	data	and	the	likelihood	of	the	complete	data	problem	
that	is	used	for	solving	the	optimization	problem	in	the	EM	algorithm.	The	likeli-
hood	of	the	observed	data	is	given	by	Equation	5	in	the	paper	by	Hahn	et	al.	(2002,	
p.	250):

L =  ∏ 
i = 1

   
N

   [  ∑ 
s = 1

   
S

    ρk  [    |Bs|
 _________  

(2π)Q/2   √
___

 |Ψs|  
   exp {–   1 _ 

2
  (Bsηi + Γs ξi)′ Ψ–1

s (Bsηi + Γsξi) }]].  (10)

	 A	simplified	presentation	of	this	equation	is	as	follows

L =  ∏ 
i = 1

   
N

    (  ∑ 
s = 1

   
S

    ρs(f(ηi|ξi,Bs, Γs, Ψs))). (11)

	 Following	from	this	description,	the	log-likelihood	of	the	model	is

LnL =  ∑ 
i = 1

   
N

  ln  (  ∑ 
s = 1

   
S

    ρs(f(ηi|ξi,Bs, Γs, Ψs))). (12)

	 This	log-likelihood	presentation	must	be	used	to	compute	the	information	criteria	
for	the	model	selection.	Conversely,	the	complete	log-likelihood	function	lnLc	(e.g.,	
Dempster,	Laird,	and	Rubin	(1977))	must	be	used	for	optimization	using	the	EM	
algorithm	which	takes	the	following	form	(cp.	Equation	9	in	Hahn	et	al.	(2002,	p.	
251)):

LnLC =  ∑ 
i = 1

   
N

       ∑ 
s = 1

   
S

    zisln(f(ηi|ξi,Bs, Γs, Ψs)) +  ∑ 
i = 1

   
N

       ∑ 
s = 1

   
S

    zisln(ρs). (13)

	 Thus,	a	potential	uncertainty	about	these	two	different	versions	of	the	log-likelihood	
may	be	avoided	in	the	paper	by	Hahn	et	al.	(2002).	In	fact,	the	FIMIX-PLS	module	
in	the	current	version	of	the	SmartPLS	software	application	(Ringle,	Wende,	and	Will	
(2005b))	uses	lnLc	from	the	EM	algorithm	for	calculating	both	the	final	segmentation	
results	and	the	information	criteria	outcomes,	but	the	regular	lnL	computation	should	
be	used	for	the	latter.
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A5: Explanationofsymbols

Am Number	of	exogenous	latent	variables	in	the	inner	path	model	as	
independent	variables	in	regression	m

am Exogenous	variable am	with	am = 1,…, Am
Bm Number	of	endogenous	latent	variables	in	the	inner	path	model	as	

independent	variables	in	regression	m
bm Endogenous	variable	bm	with	bm = 1,…, Bm
γamms Regression	coefficient	of	am	in	regression	m	for	segment	s
βbmms Regression	coefficient	of	bm	in	regression	m	for	segment	s
τms ((γamms),(βbmms)′ vector	of	the	regression	coefficients
ωms Cell(m	x	m)	of Ψs
δ Improvement	of	log-likelihood	value	
N Number	of	observations (i = 1,…, N)
S Number	of	segments	(s = 1,…, S)
Q Number	of	endogenous	latent	variables	(m = 1,…, Q)
I Identity	matrix
Ns Ns = (S – 1) + S · R + S · Q	degrees	of	freedom	for	solutions	with	

S	segments
pis A-posteriori	probability	of	membership	of	observation	i	and	segment	s
Ps Vector	of	a	posteriori	probabilities	of	segment	s
R Number	of	predictors	for	all	regressions	in	the	structural	model
Xm Case	values	of	the	independent	variable	for	regression	m	
Ym Case	values	of	the	dependent	variable	for	regression	m	
zis 0/1	assignment	variable	of	observation	i	to	segment	s	

Distribution	function	of	segment	s
Bs Matrix	of	path	coefficients	between	endogenous	latent	variables	in	

segment	s
Γs Matrix	of	path	coefficients	between	exogenous	and	endogenous	latent	

variables	in	segment	s	
ζi Vector	for	endogenous	latent	variables’	residuals	of	observation	i	

Vector	for	endogenous	latent	variables’	scores	of	observation i	
Vector	for	exogenous	latent	variables’	scores	of	observation	i

ρs Relative	size	of	segment	s	
ψs Matrix	with	variances	of	the	regressions	in	the	structural	model	on	the	

diagonal,	zero	else
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