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Abstract

Since its first introduction in the Schmalenbach Business Review, Hahn et al.’s (2002) finite 
mixture partial least squares (FIMIX-PLS) approach to response-based segmentation in 
variance-based structural equation modeling has received much attention from the mar-
keting and management disciplines. When applying FIMIX-PLS to uncover unobserved 
heterogeneity, the actual number of segments is usually unknown. As in any cluster-
ing procedure, retaining a suitable number of segments is crucial, since many manage-
rial decisions are based on this result. In empirical research, applications of FIMIX-PLS rely 
on information and classification criteria to select an appropriate number of segments to 
retain from the data. However, the performance and robustness of these criteria in deter-
mining an adequate number of segments has not yet been investigated scientifically in 
the context of FIMIX-PLS. By conducting computational experiments, this study provides 
an evaluation of several model selection criteria’s performance and of different data char-
acteristics’ influence on the robustness of the criteria. The results engender key recom-
mendations and identify appropriate model selection criteria for FIMIX-PLS. The study’s 
findings enhance the applicability of FIMIX-PLS in both theory and practice.
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1	I ntroduction

Structural equation models are widely used in business research to model relations between 
unobserved constructs and manifest variables. Most applications assume that data come 
from a homogeneous population. However, this assumption of homogeneity is unrealistic, 
since individuals are likely to differ in their perceptions and evaluations of latent constructs 
(Ansari, Jedidi, and Jagpal (2000)). To account for heterogeneity, researchers frequently use 
sequential procedures in which homogeneous subgroups are formed by means of a-priori 
information, or else they revert to the application of cluster analysis techniques. However, 
none of these approaches is considered satisfactory, because observable characteristics often 
gloss over the true sources of heterogeneity (Wedel and Kamakura (2000)). Conversely, 
the application of traditional cluster analysis techniques suffers from conceptual shortcom-
ings and cannot account for heterogeneity in the relations between latent variables. These 
weaknesses have been broadly recognized in the prior literature; consequently, research 
efforts have been devoted to the development of model-based clustering methods (e.g., 
Jedidi, Jagpal, and DeSarbo (1997a)).

Uncovering unobserved heterogeneity in covariance-based structural equation modeling 
(CBSEM) has been studied for several years (Arminger and Stein (1997); Jedidi, Jagpal, 
and DeSarbo (1997a); Dolan and van der Maas (1998); Muthén (2008)). Never-
theless, only recently has research interest focused on this problem in the context 
of partial least squares (PLS) path modeling (Wold (1982); Lohmöller (1989)), 
which is a complementary modeling approach to the widely used covariance-based 
methods (Jöreskog and Wold (1982); Hair, Ringle, and Sarstedt (2011)). Currently, 
researchers have proposed different approaches to latent class detection that hold 
considerable promise for segmentation tasks in PLS path modeling. Sarstedt (2008a) 
presents a theoretical review of available procedures and concludes that finite mixture 	
PLS (FIMIX-PLS) is now the primary choice for segmentation tasks within a PLS context.

Hahn et al. (2002) introduced the FIMIX-PLS technique for latent class detection. 
The technique was later advanced by Ringle, Sarstedt, and Mooi (2010) and Ringle, 
Wende, and Will (2010), and implemented in the software application SmartPLS 2.0 
(M3) (Ringle, Wende, and Will (2005)). The method allows the simultaneous estima-
tion of model parameters and segment affiliations of observations. Simulation studies 
(e.g., Esposito Vinzi et al. (2007); Ringle, Sarstedt, and Schlittgen (2010)) and numer-
ical comparisons (Sarstedt and Ringle (2010)) underline favorable capabilities of this 
approach compared to those of alternative segmentation methods. Furthermore, empirical 
studies (e.g., Hahn et al. (2002); Becker (2004); Conze (2007); Scheer (2008); Sarstedt, 
Schwaiger, and Ringle (2009)) also reveal that FIMIX-PLS has advantageous features 
for further differentiating and specifying the findings and interpretation of PLS path 
modeling analyses.

However, an unresolved problem in the application of FIMIX-PLS is the issue of model 
selection (i.e., determining of the number of segments underlying the data; Esposito Vinzi 
et al. (2008)). As in any clustering procedure, retaining a suitable number of segments is 
crucial, since many managerial decisions are based on this result. A misspecification can 
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result in an under- or over-segmentation, thus leading to flawed management decisions 
on, for example, customer targeting, product positioning, or determining the optimal 
marketing mix (Andrews and Currim (2003a)). If the number of segments is over-speci-
fied, marketers risk treating audience segments separately, even though dealing with them 
as a group would be more effective. But if a market is under-segmented, marketers might 
fail to identify distinct segments that could be addressed separately, enabling the marketer 
to more precisely satisfy customers’ varying wants. Since companies may spend millions of 
dollars developing and targeting market segments, the costs of over-specifying the appro-
priate number of segments are significant. Moreover, the problem of revenue losses, which 
is associated with under-segmenting a market and not targeting potentially lucrative niche 
segments, is a highly relevant issue (Boone and Roehm (2002)).

Unlike other segmentation procedures in PLS path modeling, the FIMIX-PLS algorithm 
allows the researcher to compute several statistical model selection criteria that are well-
known from finite mixture modeling literature (Sarstedt (2008a)). Correspondingly, in 
empirical research, applications of FIMIX-PLS rely on criteria such as Akaike’s infor-
mation criterion (AIC, Akaike (1973)), Bayesian information criterion (BIC, Schwarz 
(1978)), consistent AIC (CAIC, Bozdogan (1987)), and normed entropy criterion (EN, 
Ramaswamy, DeSarbo, and Reibstein (1993)) to determine the number of data segments 
that should be retained. Since these applications use real-world data in which the number 
of segments is unknown, it is not clear whether these criteria are effective. This fact is 
problematic, since previous studies have shown that analytical deviations cannot predict 
the relative performance of model selection criteria (Lin and Dayton (1997)). 

The common approach to this problem is to evaluate the efficacy of the criteria in 
detecting segments by means of simulated data. However, likelihood-based fit criteria 
are frequently not comparable across segmentation approaches (Andrews and Currim 
(2003b)) and classes of finite mixture models (Yang and Yang (2007)). Consequently, 
their performance has been evaluated in different contexts, such as mixtures of univariate 
normal distributions (e.g., Bozodgan (1994); Celeux and Soromenho (1996); Biernacki 
and Govaert (1997)), multivariate normal distributions (Bozodogan (1994); Biernacki, 
Celeux, and Govaert (2000)), mixture regression models (Andrews and Currim (2003c); 
Sarstedt (2008b)), and mixture logit models (Andrews and Currim (2003a)). 

These simulation studies provide evidence that different criteria are particularly effective 
for specific segmentation approaches. Hence, prior research can provide only limited 
guidance on the criteria’s performance in a FIMIX-PLS context. Since fitting mixture 
models to large “full-blown” path models, which is often done against the background 
of PLS’ properties (Henseler , Ringle, and Sinkovics (2009)), quickly exhausts degrees 
of freedom (Henson, Reise, and Kim (2007)), an explicit analysis in the context of 
FIMIX-PLS is necessary. Despite the fundamental relevance, no simulation has yet 
determined an accurate model selection criterion for the FIMIX-PLS method. This 
lacuna in research is particularly critical, because FIMIX-PLS continues to grow in 
popularity. Further, recent publications have demanded that FIMIX-PLS should be 
routinely carried out when evaluating any PLS path model (Albers (2010); Ringle, 
Sarstedt, and Mooi (2010)). 
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In this paper we contribute to the knowledge on PLS path modeling and FIMIX-PLS 
segmentation by conducting computational experiments that allow the researcher to 
examine the performance and robustness of alternative model selection criteria. There 
are many studies on computational experiments that evaluate estimators in the context of 
structural equation modeling. Even though analytical statistical theory can address some 
research questions, the finite sample properties of structural equation model estimators 
are often beyond the reach of established asymptotic theory. Similarly, distributions of 
the statistical measures of fit indexes, such as model selection criteria, are not even asymp-
totically known. In such situations, computational experiments and Monte Carlo studies 
provide an excellent method for evaluating estimators and goodness-of-fit statistics under 
a variety of conditions (Paxton et al. (2001)). This kind of approach allows the researcher 
to evaluate performance of the criteria against the background of diverse factors, such as 
sample size, number of segments, or the path model’s complexity. By providing recom-
mendations on the selection of an appropriate model selection criterion, our paper answers 
the call of previous studies (Esposito Vinzi et al. (2007); Sarstedt (2008a)) and contributes 
to the body of knowledge in PLS path modeling. 

The remainder of this paper is organized as follows. After a brief introduction of the 
FIMIX-PLS method in Section 2, we discuss the model selection problem in the context 
of FIMIX-PLS in Section 3. We describe the experimental design and present the analysis 
results in Section 4. Lastly, in Section 5, we summarize the findings and discuss potential 
limitations as well as opportunities for further research.

2	 The FIMIX-PLS Approach 

The FIMIX-PLS method (Hahn et al. (2002)) combines the strengths of the PLS 
method with the advantages of classifying market segments according to finite mixture 
models (e.g., Everitt and Hand (1981); McLachlan and Basford (1988)). Based on this 
concept, FIMIX-PLS simultaneously estimates the structural model parameters and as-
certains the data structure’s heterogeneity within a PLS path modeling framework. 

Initially, a path model is estimated by using the PLS algorithm and empirical data on 
the aggregate data level. This implies that the perceptions of the constructs are ho-
mogeneous in the outer measurement model. Thereafter, the resulting latent variable 
scores in the structural model are employed to run the FIMIX-PLS algorithm. The 
path model’s segment-specific heterogeneity is concentrated in the parameters of the es-
timated relations between latent variables. FIMIX-PLS captures this heterogeneity and 
calculates the probability of the observations’ segment memberships, so that they fit 
into each of the predetermined S numbers of segments. Assuming that each endoge-
nous latent variable ηi is distributed as a finite mixture of conditional multivariate nor-
mal densities fi|s(·), the segment-specific distributional function is defined as follows:

ηi ~ ​∑ 
s = 1

 ​ 
S

  ​  ​ρs fi|s(ηi | ξi,  Bs,  Γs,  Ψs),	 (1)
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where ξi is an exogenous variable vector in the inner model regarding observation i, 
Bs is the path coefficient matrix of the endogenous variables, and Γs the exogenous la-
tent variables. Ψs depicts the matrix of each segment’s regression variances of the inner 
model on the diagonal, zero else. The mixture proportion ρs determines the relative 
size of segment s (s = 1, …, S) with ρs > 0 ∀s and ​∑ 

s = 1
​ 

S

 ​ρs​ = 1.  

Substituting fi|s(ηi | ξi,  Bs,  Γs,  Ψs) results in:

ηi = ​∑ 
s = 1

 ​ 
S

  ​  ​ρs [ ​  1
 ________  

(2π)Q/2​  √
___

 |Ψs| ​
 ​ ]exp {– ​ 1 _ 

2
 ​((I – Bs)ηi + (– Γs)ξi)′ Ψ–1

s ((I – Bs)ηi 

	 + (– Γs)ξi)},	 (2)

where Q depicts the number of endogenous latent variables in the inner model and I 
the identity matrix�. We use an EM formulation of the FIMIX-PLS algorithm for sta-
tistical computations to maximize the log-likelihood of equation (2). 

Conceptually, FIMIX-PLS is equivalent to a mixture regression approach. However, 
the main difference is that the structural model can comprise a multitude of (inter-
related) endogenous latent variables. The specification of such a system of linear equa-
tions cannot be realized with conventional mixture regressions (Hahn (2002)).

3	 Model Selection in FIMIX-PLS

When applying FIMIX-PLS to empirical data, the actual number of segments S is usu-
ally unknown. As a result of problems that arise when using hypothesis tests in a finite 
mixture model framework (Aitkin and Rubin (1985)), researchers frequently revert to 
a heuristic approach. For example, they do so by building on model selection crite-
ria that can be categorized into information and classification criteria (McLachlan and 
Peel (2000)). Information criteria are based on a penalized form of the likelihood, since 
they simultaneously take into account a model’s goodness-of-fit (likelihood) and the 
number of parameters used to achieve that fit. Therefore, they correspond to a penal-
ized likelihood function, that is, two times the negative log-likelihood plus a penalty 
term that increases with the number of parameters and/or the number of observations. 
Information criteria generally favor models with a large log-likelihood and few param-
eters, and are scaled so that a lower value represents a better fit. Operationally, the re-
searcher examines several competing models with alternating numbers of segments, 
picking the model that minimizes a particular information criterion. However, in line 
with substantive theory, researchers usually use a combination of criteria to guide this 
decision in their applications (Sarstedt (2008b)). 

�	 We note that this presentation differs from Hahn et al.’s (2002) original presentation, which requires additional 
descriptions and clarifications in some instances (see Table A4 in the appendix). Even though these modifications 
do not significantly affect FIMIX-PLS’ capability to accurately recover parameters, they have noticeable effects 
on the development of log-likelihood values. We have implemented corresponding changes in the experimental 
version of SmartPLS that will be made available in the software version that will follow release M3.
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Although the preceding heuristics account for overparametrization through the integra-
tion of a penalty term, they do not ensure that the segments are sufficiently separated in 
the selected solution. Since the targeting of markets requires segments to be differentiable 
– that is, that the segments are conceptually distinguishable and respond differently to 
different marketing-mix elements and programs (Mooi and Sarstedt (2011)) – this point 
is of great practical interest. Based on an entropy statistic that indicates the degree of 
separation between the segments, classification criteria can help assess whether the anal-
ysis produces well-separated clusters (Wedel and Kamakura (2000)). These classification 
criteria include combinations of log-likelihood and entropy-based concepts, such as the 
integrated completed likelihood BIC (ICL-BIC, Biernacki, Celeux, and Govaert (2000)) 
and classification likelihood criterion (CLC, Biernacki and Govaert (1997)).

In the past, many different information and classification criteria were developed to assess 
the number of segments, all of which have different theoretical underpinnings and statis-
tical properties (McLachlan and Peel (2000)). The applicability of these model selection 
criteria is one of the most important features of FIMIX-PLS, since alternative approaches 
to response-based segmentation in PLS path modeling do not provide any guidance on 
model selection (Sarstedt (2008a)). 

To date, only limited research has addressed statistical criteria’s performance concerning 
model selection in finite mixture SEMs. The problem of testing for the number of 
segments is only briefly addressed, if at all, in simulation studies that test newly proposed 
segmentation algorithms in a CBSEM context (Jedidi, Jagpal, and DeSarbo (1997a); 
Arminger, Stein, and Wittenberg (1999)). However, it is important to note that these 
approaches to CBSEM are based on different statistical features than its FIMIX-PLS adap-
tion by Hahn et al. (2002). Since FIMIX-PLS is essentially based on a mixture regression 
concept (Hahn et al. (2002)), previous studies in this context can provide some guidance 
regarding model selection criteria’s performance.

While some studies focus on the influence of specific data constellations (e.g., Oliveira-
Brochado and Martins (2006); Sarstedt (2008b); Becker et al. (2010)), only two studies 
present a comprehensive evaluation of data characteristics’ influence on model selection 
criteria’s performance in mixture regression models. In their primary study, Hawkins, 
Allen, and Stromberg (2001) assess the performance of different criteria in determining 
the number of segments in mixtures of linear regression models. In their simulation study, 
these authors provide a comparison of 12 criteria and multiple approximations of these, 
taking into account three data characteristics: the number of segments, degree of pair-
wise separation between the segments, and relative segment sizes. Hawkins, Allen, and 
Stromberg (2001) compare the percentages of data sets in which each criterion identifies 
the true number of segments (i.e., the success rate). Based on the analysis results, the 
authors conclude that BIC is the recommended criterion for choosing between one- and 
two-segment mixtures of linear regression models. None of the measures outperforms the 
others across the simulation runs for three and four segments, but all the criteria perform 
poorly for four segments, showing success rates of less than 50%.
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Andrews and Currim (2003c) investigate the performance of seven model selection cri-
teria used with mixture regression models. These authors evaluate eight data character-
istics that would potentially affect the criteria’s performance, including the number of 
segments, the mean separation between segment coefficients, sample size, and relative 
segment sizes. Their study shows that because it has the highest success rate, the modi-
fied AIC with a penalty factor of three (AIC3, Bozdogan (1994)) is clearly the best cri-
terion to use across a wide variety of model specifications and data configurations. 

Although these studies provide important insights into the performance of the crite-
ria, no previous study has evaluated their efficacy in the context of FIMIX-PLS, which 
has become an important analysis context in marketing (Rigdon, Ringle, and Sarstedt 
(2010)). In the light of this gap in the academic literature and the importance of choos-
ing the correct number of segments in marketing studies, an evaluation of commonly 
used model selection criteria in FIMIX-PLS by means of computational experiments is 
particularly valuable from both a research and practice perspective.

4	 Computational Experiments

4.1	 Design

The study of computational experiments analyzes the performance and robustness of 
the following model selection criteria, frequently used for model selection in finite mix-
ture modeling (McLachlan and Peel (2000); Sarstedt (2008b))�:

Information criteria: AIC (Akaike (1973)), AIC3 (Bozdogan (1994)), AIC4 (Bozdogan 
(1994)), AICc (Hurvich and Tsai (1989)), BIC (Schwarz (1978)), CAIC (Bozdogan 
(1987)), MDL2, MDL5, (both, Liang, Jaszczak, and Coleman (1992)), and HQ 
(Hannan and Quinn (1979)).
Classification criteria: lnLc (Dempster, Laird, and Rubin (1977)), NEC (Celeux and 
Soromenho (1996)), ICL-BIC (Biernacki, Celeux, and Govaert (2000)), PC (Bezdek 
(1981)), NFI (Roubens (1978)), NPE (Bezdek (1981)), AWE (Banfield and Raftery 
(1993)), CLC (Biernacki and Govaert (1997)), and EN (Ramaswamy, DeSarbo, and 
Reibstein (1993)). 

In this study, we manipulate six data characteristics (factors). Our choice of the factors 
and their levels draws primarily on related research conducted by Hawkins, Allen, and 
Stromberg (2001), and Andrews and Currim (2003a; 2003c), as well as previous em-
pirical analyses using FIMIX-PLS:

Factor 1: Number of segments [2, 4].
	 Analyzing a two- and four-segment solution is consistent with the range of segments 

found in Hawkins, Allen, and Stromberg’s (2001) primary study on the performance of 

�	 Table A1 in the appendix includes the formal definitions of the criteria. The reader is referred to the references 
cited below for detailed discussions of these criteria’s theoretical underpinnings.

n

n
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model selection criteria in the context of mixtures of linear models. Furthermore, these 
factor levels have been evaluated in numerical FIMIX-PLS experiments (e.g., Ringle, 
Wende, and Will (2005a); Esposito Vinzi et al. (2007); Rigdon, Ringle, and Sarstedt 
(2010)). The selected factor levels also cover findings from FIMIX-PLS studies using real 
data (e.g., Becker (2004); Scheer (2008); Sarstedt, Schwaiger, and Ringle (2009)). In 
light of the increased complexity of the analysis task, we expect an inferior performance 	
from the model selection criteria when we consider a higher number of segments.

Factor 2: Number of observations [100, 400].
	 This factor includes two different levels. We choose sample sizes of 100 and 400 because 

similar levels have been reported in related simulation studies (Andrews and Currim 
(2003a; 2003c); Sarstedt (2008b)), as well as in PLS path modeling (e.g., Sarstedt and 
Schloderer (2010); Wagner, Henning-Thurau, and Rudolph (2009)) and FIMIX-PLS 
applications (Sarstedt and Ringle (2010)). In partial accordance with the consistency at 
large issue for PLS path modeling (e.g., Hui and Wold (1982); Henseler, Ringle, and 
Sinkovics (2009); Hair, Ringle, and Sarstedt (2011)), we expect a better performance 
from the model selection criteria when the number of observations increases.

Factor 3: Disturbance term of the endogenous latent variables [10%, 25%]. 
	 Past research has identified the level of endogenous latent variables’ disturbance term as 

a key standard for clear-cut segmentation (e.g., Ringle and Schlittgen (2007)). In line 
with prior research on response-based segmentation techniques’ performance in PLS 
path modeling (Becker, Ringle, and Völckner (2009); Ringle, Sarstedt, and Schlittgen 
(2010)), we choose two levels of disturbance terms. A higher level disturbance term 
complicates the segment identification. Thus, we expect the model selection criteria to 
perform poorly if there is an increase in the endogenous latent variables’ error variance 
and, hence, in the manifest variables.

Factor 4: Distance between segment-specific path coefficients [0.25, 0.75].
	 Past studies support the assertion that similar segments are harder to detect (Hawkins, 

Allen, and Stromberg (2001); Andrews and Currim (2003a; 2003c)). Andrews and 
Currim (2003c) account for very high levels of mean separation between segment coef-
ficients (0.5, 1.0, and 1.5), but we choose smaller deviations, as they more adequately 
reflect the results of actual applications (e.g., Conze (2007); Sarstedt, Schwaiger, and 
Ringle (2009)). Hence, in this study, we change the prespecified path coefficients’ 
absolute difference between segments. We assume that the model selection criteria 
show an increased performance when segments’ distinctiveness increases in terms of 
the distance between the segment-specific path coefficients.

Factor 5: Model complexity [low, high].
	 Previous simulation studies often account for different model complexities. For 

example, in the context of mixture logit models, Andrews and Currim (2003a) vary 
the number of choice alternatives. In their follow-up study on mixture regression 
models, these authors use a varying number of predictors to account for different levels 
of model complexity (Andrews and Currim (2003c)). Following this notion, we utilize 
two models, one with low complexity and another with high.
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	 The PLS path model with lower complexity (Figure A2, Appendix) uses four exog-
enous latent variables (ξ1, ξ2, ξ3, and ξ4), all of which relate to a single endogenous 
variable (η1). Thus, there are four relations with coefficients γ11, γ21, γ31, and γ41 in 
the structural model. In the data simulation, the prespecification of the path coeffi-
cients uses a higher γ11 value and lower values for γ21, γ31, and γ41 for the first group 
of data. For the second group, γ21 is at a higher level, but all the remaining path 
coefficients consistently remain at a lower level. Depending on the segment under 
consideration, the same logic holds for four segments, when the path coefficients are 
increased in turn.

	 Since the size of the coefficients is not important but their distinctiveness is, we focus 
on their alternative levels of difference in the inner path model (factor 4). We use five 
manifest variables for construct measurement and all loadings exhibit the same level. 
This kind of structural equation model has previously been reported in FIMIX-PLS 
studies (e.g., Ringle (2006)), and in covariance-based finite mixture structural equation 
modeling (Jedidi, Jagpal, and DeSarbo (1997b)).

	 The complex model (Figure A3, Appendix) uses three exogenous latent variables 	
(ξ1, ξ2, and ξ3), three endogenous latent variables (η1, η2, and η3), and six inner 
model path relations (with coefficients γ11, γ21, γ22, γ32, β13, and β23). The parameter 
prespecification to generate the experimental data is analogous to the previous model. 
A specific group of data has a few specifically strong relations in the inner model, but 
all other paths remain at a lower level. Since the number of free parameters in the 
complex model increases considerably compared to those of the less complex structural 
equation model, we expect lower success rates in the complex model.

Factor 6: Relative segment sizes [balanced, unbalanced].
	 In past simulation studies, researchers evaluated the effect of segment sizes on criteria 

performance (Hawkins, Allen, and Stromberg (2001); Andrews and Currim (2003a; 
2003c); Sarstedt (2008a)). This factor is critically important for PLS segmenta-
tion methods, since Esposito Vinzi et al. (2007) show that the other prominent 
approach to response-based segmentation in PLS, PLS-TPM, which has been 
further developed into REBUS-PLS (Esposito Vinzi et al. (2008)), cannot handle 
unbalanced segments. FIMIX-PLS however performs as expected in almost all data 
constellations. We choose two factor levels, balanced and unbalanced. The balanced 
factor level is connected with equally sized segments (50%/50% in the case of two 
segments; 25%/25%/25%/25% in the case of four segments). The unbalanced factor 
level characterizes the existence of one segment that is considerably larger than the 
other segments (80%/20% in the case of two segments; 55%/15%/15%/15% in 
the case of four segments). Hawkins, Allen, and Stromberg (2001) and Sarstedt 
(2008b) evaluate similar situations in their simulation studies. Further, several 
empirical studies (e.g., Scheer (2008); Sarstedt and Ringle (2010)) report these 
conditions. Although previous studies account for a minimum segment size of 5% 
for the smallest segment (Andrews and Currim (2003a; 2003c)), this level is not 
feasible in our study, because the smallest sample size of 100 would not produce 
sufficiently large niche segments to successfully apply the FIMIX-PLS algorithm. In 
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the light of Esposito Vinzi et al.’s (2007) findings, we assume that the performance 
of the criteria only declines slightly, if at all, with unbalanced relative segments sizes 
than with balanced segment sizes.

We generate data sets for each possible combination of factor levels. Since there are six 
factors with two levels, this adds up to 26 = 64 factor level combinations.

Computational experiments on structural equation models require the generation of 
data for indicator variables. After estimating the model, these data meet both the rela-
tions’ pre-specified parameters in the structural model and in the measurement models. 
In covariance structure analysis, there are two different approaches that are appropriate 
for obtaining such data. One approach calculates the indicator variables’ implied covari-
ance matrix for given values of the parameters in the model and generates data from a 
multivariate distribution that fits this covariance matrix. The second approach requires the 
latent variables’ scores in keeping with the specified relations in the structural model, after 
which data are generated for the observed variables in accordance with the measurement 
models’ pre-specified parameters. The latter approach allows the researcher to obtain data 
with certain distributional characteristics, as implied by the model (Mattson (1997)). Only 
a few Monte Carlo simulation studies and computational experiments, which require arti-
ficial data for pre-specified parameters, have been presented for PLS path modeling thus 
far (e.g., Chin, Marcolin, and Newsted (2003); Reinartz, Haenlein, and Henseler (2009); 
Ringle, Sarstedt, and Schlittgen (2009); Henseler and Chin (2010)). All of these studies 
use the second CBSEM data generation approach, which we also apply in this research�. 

4.2	 Model Estimation and Evaluation

This study applies the FIMIX-PLS method by using the software application Smart-
PLS 2.0 (M3) (Ringle, Wende, and Will (2005b)). To identify the appropriate num-
ber of segments, we test alternative segment number solutions for each factor constel-
lation. If the set of artificially generated data consists of two (four) segments, then in 
this analysis we draw on FIMIX-PLS solutions for one through six (one through eight) 
segments. We save the results for the FIMIX-PLS runs with different numbers of seg-
ments per factor constellation. 

Owing to the possible convergence of the EM algorithm in local optimum solutions 
(Wu (1983)), each FIMIX-PLS analysis uses 30 replications. To avoid premature con-
vergence, we only truncate the FIMIX-PLS algorithm when the improvement δ of 
the log-likelihood is under the threshold value of 1 ∙ 10-15, or the maximum number 
of 30,000 iterations is attained. In all cases, the δ criterion terminates the algorithm, 
indicating that the stop criterion parameter has been set at a sufficiently low level, as 
demanded by Wedel and Kamakura (2000). Moreover, to ensure the robustness of the 

�	 The authors would like to thank Rainer Schlittgen (Institute of Statistics and Econometrics, University of Ham-
burg, Von-Melle-Park 5, 20146 Hamburg, Germany, rainer.schlittgen@uni-hamburg.de) for sharing his GAUSS 
programs for PLS data generation (Ringle and Schlittgen (2007)) with them. 
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results in this study, we include an analysis of 30 different artificially generated sets of 
data for each of the 64 factor-level combinations. 

Testing alternative numbers of latent classes with 30 replications each requires two 
kinds of evaluation to determine a FIMIX-PLS solution. First, we select the best so-
lution in terms of the 30 replications’ log-likelihood values. Second, we compare the 
model selection criteria for these best FIMIX-PLS solutions across the one through six 
(one through eight) alternative segment solutions per factor constellation. We conduct 
this procedure for all 30 alternative artificially generated sets per factor constellation 
that become part of the final results presentation. Finally, for each criterion, we com-
pute the percentages of data sets, identifying the true number of segments (i.e., the 
success rate; Table 1). In total, we draw on 32 x 6 x 30 x 30 (two segments) + 32 x 8 x 
30 x 30 (four segments) = 403,200 FIMIX-PLS runs. The best solution for each of the 
18 FIMIX-PLS selection criteria from 30 replications becomes part of the results pre-
sentation of this study’s computational experiments. Consequently, this study includes 
403,200 / 30 x 18 = 241,920 model selections. 

4.3	 Results Analysis and Discussion

The results in Table 1 illustrate the average success rates (S) for each criterion and the 
rates for underfitting (U) and overfitting (O) (Andrews and Currim (2003a; 2003c)). 
For example, BIC identifies the true number of segments in 47% of all simulation runs 
in which the sample size is held constant at N = 100 and all other factors are varied 
according to the factor levels described above. At this factor level, BIC overestimates 
(underestimates) the true number of segments in 6% (47%) of all simulation runs (e.g., 
the criterion pointed at the three- to six-segment solution where S = 2 and at the five- 
to eight-segment-solution where S = 4). 

The results show that AIC4 is the best information criterion to use with a large variety 
of data configurations. With an overall success rate of 58%, AIC4 proves to be ad-
vantageous, particularly in more complex model set-ups (74%). BIC also performs well 
(overall success rate, 57%), especially when analyzing models using a higher number of 
observations (73%) and more distinct segment-specific path coefficients (88%). Simi-
larly, CAIC and HQ perform favorably with success rates of 55%. PE, PC, AIC3, NFI, 
and MDL2 achieve significantly lower overall success rates between 39% and 45%. All 
other criteria (AIC, AICc, MDL5, lnLc, NEC, ICL-BIC, AWE, CLC, and EN) exhibit 
very unsatisfactory success rates of 28% and lower. AIC achieved the worst perfor-
mance of only 6%. 

With overfitting quotas of more than 80%, the three criteria AIC, AICc, and EN have 
a propensity to overestimate the true number of segments. In contrast to this finding, 
MDL5, lnLc, ICL-BIC, and AWE exhibit a strong tendency to underestimate the prespec-
ified number of segments with underfitting quotas of at least 77%. Consequently, these 
criteria should be used in cases in which an overestimation must be avoided at all costs. 
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Of the criteria with the highest success rates, BIC and CAIC show a clear-cut under-
fitting tendency, while AIC4 and HQ provide results in both over- and underfitting 
directions. Only AIC3 has a relatively high success rate (43%) and a very strong overfit-
ting tendency. Tables 2 and 3 provide a detailed analysis of these criteria, separated into 
a one- through six-segment solution (for S = 2; Table 2) and a one- through eight-seg-
ment solution (for S = 4; Table 3), respectively�. The results indicate that for S = 4 
(Table 3), both BIC and CAIC either match or clearly underestimate the correct num-
ber of segments. In contrast, AIC3 either matches the prespecified number of segments 
or tends to strongly overestimate the correct number of segments. Finally, AIC4 and 
HQ show a more or less equal distribution in the number of segments with which this 
criterion over- and underfits the correct number of segment. 

In view of these findings, we combine the criteria with high success rates and pro-
nounced tendencies to over- and underestimate the correct number of segments. In 
about one third (31%) of all cases, AIC3 and CAIC simultaneously indicate the correct 
number of segments. Likewise, in 6% of all cases, both criteria indicate the same, in-
correct, number of segments. Thus, whenever AIC3 and CAIC indicate the same num-
ber of segments, this result meets the correct number of segments in 84% of all cases. 
Alternatively, a joint consideration of AIC3 and BIC appears promising, because this 
combination yields the true number of segments in 82% of all cases where both criteria 
indicate the same number of segments. 

Overall, the success rates of the criteria generally increase with lower numbers of seg-
ments, more observations, higher differences between the segment-specific path coef-
ficients, and smaller disturbance terms. Even though we would expect the model selec-
tion criteria’s performance to decline with unbalanced relative segment sizes, the perfor-
mance remains at levels that are similar to those in situations of equally sized segments. 
This result provides support for FIMIX-PLS’ exceptionally high degree of robustness 
in respect of this factor (Esposito Vinzi et al. (2007)). Furthermore, although we might 
suppose that more complex path models would lead to a decline in performance, the 
results of the computational experiments clearly show that the model selection criteria 
perform better in the more complex path model constellation. Andrews and Currim 
(2003a) report a similar result in their study on mixture logit models and surmise that 
less complex models provide a better fit, thus leaving less opportunity for improvement 
in fit by increasing the number of segments. The same reason holds in our study. A 
detailed analysis shows that for S = 1, the lnL value computed across all the factor lev-
els is almost three times higher in the complex model than in the simple model. This 
difference is also more pronounced in a one-segment solution than in higher-segment 
solutions in the complex model.

To further examine the results of this study, we determine the effects of the simu-
lation design’s factors on the criteria success rates. Therefore, we meta-analyze the 
results of the criteria by fitting multinomial logistic regression models to the success 

�	 The remaining criteria’s detailed analysis results are available online at http://www.smartpls.de/sbr-app1.pdf.
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Table 1:	 Success (S), underfitting (U) and overfitting (O) rates of the criteria

    AIC AIC3 AIC4 AICc BIC CAIC
    U S O U S O U S O U S O U S O U S O

Factor 1: 

# segments

2 0% 8% 92% 5% 49% 46% 17% 65% 18% 1% 20% 79% 27% 69% 4% 30% 68% 2%

4 0% 5% 95% 8% 38% 54% 35% 50% 14% 1% 12% 87% 53% 45% 2% 56% 42% 2%
Factor 2: 

# observations

100 0% 6% 94% 6% 36% 57% 31% 47% 22% 1% 22% 77% 47% 47% 6% 50% 46% 4%

400 0% 6% 94% 7% 48% 46% 20% 69% 11% 1% 10% 89% 26% 73% 1% 28% 72% 1%
Factor 3: 

Disturbance term

10% 0% 5% 95% 3% 48% 49% 18% 66% 16% 0% 15% 85% 29% 68% 3% 31% 67% 2%

25% 0% 7% 92% 10% 39% 51% 34% 49% 16% 2% 17% 81% 51% 46% 3% 54% 44% 2%
Factor 4: 

Path distance

0.75 0% 8% 92% 0% 51% 49% 1% 80% 19% 0% 19% 81% 9% 88% 4% 11% 87% 2%

0.25 0% 5% 95% 14% 36% 50% 51% 35% 14% 2% 14% 85% 71% 26% 3% 75% 23% 2%
Factor 5: 

Model complexity

simple 0% 3% 97% 6% 22% 71% 32% 41% 26% 1% 5% 94% 53% 44% 3% 55% 43% 2%

complex 0% 10% 90% 8% 64% 28% 20% 74% 6% 1% 27% 73% 27% 70% 3% 30% 67% 3%
Factor 6: 

Segment sizes

balanced 0% 6% 94% 7% 42% 51% 26% 58% 16% 1% 16% 83% 37% 60% 4% 39% 59% 2%

unbalanced 0% 7% 93% 7% 46% 46% 27% 56% 17% 1% 16% 84% 47% 51% 2% 50% 48% 2%
Overall 0% 6% 93% 7% 43% 50% 26% 58% 16% 1% 16% 83% 40% 57% 3% 43% 55% 2%

    HQ MDL2 MDL5 lnLc NEC* ICL-BIC
    U S O U S O U S O U S O U S O U S O

Factor 1: 

# segments

2 11% 61% 29% 44% 54% 2% 61% 39% 0% 49% 22% 28% 0% 45% 55% 74% 25% 1%

4 30% 50% 20% 76% 24% 0% 93% 7% 0% 61% 5% 34% 25% 11% 64% 88% 11% 1%
Factor 2: 

# observations

100 20% 43% 37% 74% 24% 2% 89% 11% 0% 36% 5% 58% 6% 18% 76% 80% 17% 2%

400 18% 66% 16% 44% 56% 0% 61% 39% 0% 75% 16% 9% 17% 34% 49% 81% 19% 0%
Factor 3: 

Disturbance term

10% 14% 62% 23% 49% 49% 1% 69% 31% 0% 46% 18% 36% 14% 36% 50% 75% 24% 1%

25% 26% 48% 26% 71% 28% 1% 84% 16% 0% 64% 9% 27% 11% 19% 69% 87% 12% 1%
Factor 4: 

Path distance

0.75 0% 74% 26% 30% 69% 1% 56% 44% 0% 41% 23% 37% 19% 45% 36% 63% 35% 2%

0.25 40% 37% 23% 90% 9% 1% 97% 3% 0% 70% 5% 26% 6% 10% 84% 100% 0% 0%
Factor 5: 

Model complexity

simple 24% 37% 39% 71% 29% 0% 85% 15% 0% 68% 8% 24% 3% 19% 78% 99% 0% 0%

complex 17% 74% 10% 49% 49% 2% 68% 32% 0% 43% 19% 38% 22% 36% 42% 63% 35% 2%
Factor 6: 

Segment sizes

balanced 19% 55% 26% 59% 40% 1% 75% 25% 0% 56% 11% 33% 12% 26% 62% 81% 18% 1%

unbalanced 23% 56% 21% 62% 37% 1% 81% 19% 0% 54% 19% 27% 15% 31% 55% 82% 17% 1%
Overall 20% 55% 24% 60% 39% 1% 77% 23% 0% 55% 14% 31% 13% 28% 60% 81% 18% 1%

    PC* NFI* PE* AWE CLC EN*
    U S O U S O U S O U S O U S O U S O

Factor 1: 

# segments

2 0% 85% 15% 0% 79% 21% 0% 89% 11% 67% 33% 0% 50% 22% 28% 0% 15% 85%

4 91% 2% 7% 89% 3% 8% 93% 2% 5% 95% 3% 1% 79% 7% 14% 6% 5% 89%
Factor 2: 

# observations

100 44% 39% 17% 42% 34% 23% 45% 41% 13% 87% 12% 0% 55% 4% 41% 4% 6% 90%

400 49% 47% 5% 48% 43% 9% 49% 48% 3% 75% 23% 2% 74% 19% 7% 3% 5% 91%
Factor 3: 

Disturbance term

10% 47% 45% 7% 47% 42% 11% 48% 47% 5% 75% 24% 2% 53% 20% 27% 3% 12% 85%

25% 44% 42% 14% 42% 40% 18% 45% 44% 11% 87% 12% 0% 75% 9% 16% 3% 8% 88%
Factor 4: 

Path distance

0.75 50% 47% 3% 49% 45% 6% 50% 48% 3% 63% 36% 2% 41% 26% 33% 2% 13% 85%

0.25 41% 40% 18% 40% 37% 24% 43% 43% 14% 100% 0% 0% 87% 3% 10% 4% 7% 88%
Factor 5: 

Model complexity

simple 43% 42% 15% 42% 38% 20% 44% 43% 12% 92% 8% 0% 81% 7% 11% 5% 8% 87%

complex 48% 46% 6% 47% 44% 9% 49% 47% 4% 70% 28% 2% 47% 22% 31% 2% 12% 86%
Factor 6: 

Segment sizes

balanced 46% 43% 11% 45% 39% 16% 47% 45% 8% 81% 18% 1% 65% 11% 24% 3% 6% 91%

unbalanced 44% 46% 10% 43% 45% 12% 46% 47% 8% 81% 19% 0% 63% 21% 15% 2% 19% 79%
Overall 46% 44% 11% 44% 41% 15% 47% 45% 8% 81% 18% 1% 64% 15% 21% 3% 10% 87%
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Table 1:	 Success (S), underfitting (U) and overfitting (O) rates of the criteria

    AIC AIC3 AIC4 AICc BIC CAIC
    U S O U S O U S O U S O U S O U S O

Factor 1: 

# segments

2 0% 8% 92% 5% 49% 46% 17% 65% 18% 1% 20% 79% 27% 69% 4% 30% 68% 2%

4 0% 5% 95% 8% 38% 54% 35% 50% 14% 1% 12% 87% 53% 45% 2% 56% 42% 2%
Factor 2: 

# observations

100 0% 6% 94% 6% 36% 57% 31% 47% 22% 1% 22% 77% 47% 47% 6% 50% 46% 4%

400 0% 6% 94% 7% 48% 46% 20% 69% 11% 1% 10% 89% 26% 73% 1% 28% 72% 1%
Factor 3: 

Disturbance term

10% 0% 5% 95% 3% 48% 49% 18% 66% 16% 0% 15% 85% 29% 68% 3% 31% 67% 2%

25% 0% 7% 92% 10% 39% 51% 34% 49% 16% 2% 17% 81% 51% 46% 3% 54% 44% 2%
Factor 4: 

Path distance

0.75 0% 8% 92% 0% 51% 49% 1% 80% 19% 0% 19% 81% 9% 88% 4% 11% 87% 2%

0.25 0% 5% 95% 14% 36% 50% 51% 35% 14% 2% 14% 85% 71% 26% 3% 75% 23% 2%
Factor 5: 

Model complexity

simple 0% 3% 97% 6% 22% 71% 32% 41% 26% 1% 5% 94% 53% 44% 3% 55% 43% 2%

complex 0% 10% 90% 8% 64% 28% 20% 74% 6% 1% 27% 73% 27% 70% 3% 30% 67% 3%
Factor 6: 

Segment sizes

balanced 0% 6% 94% 7% 42% 51% 26% 58% 16% 1% 16% 83% 37% 60% 4% 39% 59% 2%

unbalanced 0% 7% 93% 7% 46% 46% 27% 56% 17% 1% 16% 84% 47% 51% 2% 50% 48% 2%
Overall 0% 6% 93% 7% 43% 50% 26% 58% 16% 1% 16% 83% 40% 57% 3% 43% 55% 2%

    HQ MDL2 MDL5 lnLc NEC* ICL-BIC
    U S O U S O U S O U S O U S O U S O

Factor 1: 

# segments

2 11% 61% 29% 44% 54% 2% 61% 39% 0% 49% 22% 28% 0% 45% 55% 74% 25% 1%

4 30% 50% 20% 76% 24% 0% 93% 7% 0% 61% 5% 34% 25% 11% 64% 88% 11% 1%
Factor 2: 

# observations

100 20% 43% 37% 74% 24% 2% 89% 11% 0% 36% 5% 58% 6% 18% 76% 80% 17% 2%

400 18% 66% 16% 44% 56% 0% 61% 39% 0% 75% 16% 9% 17% 34% 49% 81% 19% 0%
Factor 3: 

Disturbance term

10% 14% 62% 23% 49% 49% 1% 69% 31% 0% 46% 18% 36% 14% 36% 50% 75% 24% 1%

25% 26% 48% 26% 71% 28% 1% 84% 16% 0% 64% 9% 27% 11% 19% 69% 87% 12% 1%
Factor 4: 

Path distance

0.75 0% 74% 26% 30% 69% 1% 56% 44% 0% 41% 23% 37% 19% 45% 36% 63% 35% 2%

0.25 40% 37% 23% 90% 9% 1% 97% 3% 0% 70% 5% 26% 6% 10% 84% 100% 0% 0%
Factor 5: 

Model complexity

simple 24% 37% 39% 71% 29% 0% 85% 15% 0% 68% 8% 24% 3% 19% 78% 99% 0% 0%

complex 17% 74% 10% 49% 49% 2% 68% 32% 0% 43% 19% 38% 22% 36% 42% 63% 35% 2%
Factor 6: 

Segment sizes

balanced 19% 55% 26% 59% 40% 1% 75% 25% 0% 56% 11% 33% 12% 26% 62% 81% 18% 1%

unbalanced 23% 56% 21% 62% 37% 1% 81% 19% 0% 54% 19% 27% 15% 31% 55% 82% 17% 1%
Overall 20% 55% 24% 60% 39% 1% 77% 23% 0% 55% 14% 31% 13% 28% 60% 81% 18% 1%

    PC* NFI* PE* AWE CLC EN*
    U S O U S O U S O U S O U S O U S O

Factor 1: 

# segments

2 0% 85% 15% 0% 79% 21% 0% 89% 11% 67% 33% 0% 50% 22% 28% 0% 15% 85%

4 91% 2% 7% 89% 3% 8% 93% 2% 5% 95% 3% 1% 79% 7% 14% 6% 5% 89%
Factor 2: 

# observations

100 44% 39% 17% 42% 34% 23% 45% 41% 13% 87% 12% 0% 55% 4% 41% 4% 6% 90%

400 49% 47% 5% 48% 43% 9% 49% 48% 3% 75% 23% 2% 74% 19% 7% 3% 5% 91%
Factor 3: 

Disturbance term

10% 47% 45% 7% 47% 42% 11% 48% 47% 5% 75% 24% 2% 53% 20% 27% 3% 12% 85%

25% 44% 42% 14% 42% 40% 18% 45% 44% 11% 87% 12% 0% 75% 9% 16% 3% 8% 88%
Factor 4: 

Path distance

0.75 50% 47% 3% 49% 45% 6% 50% 48% 3% 63% 36% 2% 41% 26% 33% 2% 13% 85%

0.25 41% 40% 18% 40% 37% 24% 43% 43% 14% 100% 0% 0% 87% 3% 10% 4% 7% 88%
Factor 5: 

Model complexity

simple 43% 42% 15% 42% 38% 20% 44% 43% 12% 92% 8% 0% 81% 7% 11% 5% 8% 87%

complex 48% 46% 6% 47% 44% 9% 49% 47% 4% 70% 28% 2% 47% 22% 31% 2% 12% 86%
Factor 6: 

Segment sizes

balanced 46% 43% 11% 45% 39% 16% 47% 45% 8% 81% 18% 1% 65% 11% 24% 3% 6% 91%

unbalanced 44% 46% 10% 43% 45% 12% 46% 47% 8% 81% 19% 0% 63% 21% 15% 2% 19% 79%
Overall 46% 44% 11% 44% 41% 15% 47% 45% 8% 81% 18% 1% 64% 15% 21% 3% 10% 87%

*	Factor 1: Number of segments; Factor 2: Number of observations; Factor 3: Disturbance term; Factor 4: Distance 
between segment-specific path coefficients; Factor 5: Model complexity; Factor 6: Relative segment sizes.

	B y its formal definition (Table A1, Appendix), the criterion does not provide reasonable results for the one-segment 
solution.
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Table 2:	 Detailed analysis of selected criteria (S = 2)
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data. We code the dependent variable as –1, the criterion underestimated the correct 
number of segments; 0, the criterion identified the correct number of segments (ref-
erence category); and 1, the criterion overestimated the correct number of segments. 
Following Andrews and Currim (2003a) and Andrews and Currim (2003c), we fit 
separate logistic models to the data of each of the criteria. Table 4 shows the resulting 
parameter estimates for the five criteria AIC3, AIC4, BIC, CAIC, and HQ, discussed 
above�. The results indicate whether the explanatory variables increase or decrease 
the log odds of underestimating (dependent equals –1) or overestimating (dependent 
equals 1) the correct number of segments. 

For example, in the case of AIC4, increasing the error variance – that is, switching from 
the reference category (disturbance term = 10%) to the higher category (disturbance 
term = 25%) – increases the log odds of under- or overestimating the correct number 
of segments, which is mirrored in the positive β coefficients (1.95 for underestimations 
and 0.61 for overestimation). Similarly, because both β coefficients are negative, in-
creasing the distance between segment-specific path coefficients from 0.25 (reference 
category) to 0.75 decreases the log odds of misspecifying the correct number of seg-
ments. Overall, increasing the number of observations, the distance between segment-
specific path coefficients, or model complexity increases the log odds of estimating the 
true number of segments. We note that the influence of relative segment size is small 
(but mostly significant in the case of overestimation), which is also mirrored in the 
somewhat inconsistent descriptive results of this factor (Table 1). 

5	 Summary and Conclusion

In PLS path modeling applications, uncovering and treating unobserved heterogeneity 
is critical to the quality of the result presentations and interpretations (Rigdon, Ringle, 
and Sarstedt (2010)). This important issue should be a matter of concern when eval-
uating any PLS path modeling results (Ringle, Sarstedt, and Mooi (2010); Sarstedt, 
Schwaiger, and Ringle (2009); Hair, Ringle, and Sarstedt (2011)). Sarstedt’s (2008a) 
review of approaches to response-based segmentation within a PLS framework reveals 
that FIMIX-PLS (Hahn et al. (2002)) is the primary method in this respect�.

Answering the call for a further evaluation of the problematic aspects of the FIMIX-
PLS approach when it was initially presented by Hahn et al. (2002), and in subsequent 
studies on computational experiments and in empirical applications (Esposito Vinzi 
et al. (2007); Ringle, Sarstedt, and Mooi (2010); Ringle, Wende, and Will (2010); 
Sarstedt and Ringle (2010); Sarstedt, Schwaiger, and Ringle (2009)), in this paper 
we address the problem of model selection by providing a comprehensive evaluation 
of 18 different model selection criteria in the context of FIMIX-PLS. Despite FIMIX-
PLS’ frequent application in recent research work, the question of how many segments 

�	 The analysis results of all the remaining criteria are available online at http://www.smartpls.de/sbr-app1.pdf
�	 The technique has been implemented in the SmartPLS software application (Ringle, Sarstedt, and Schlittgen 

(2005b)), and hence, is generally available for PLS path modeling applications.
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Table 4:	 Meta analysis of best-performing criteria: Multinomial logistic regression 
results

AIC3 AIC4 BIC CAIC HQ

Dependent Reference 
category β β β β β

–1 
 

under-
estimation

Factor 1: 
# segments 

2 0.84 1.94 4.66 5.08 1.89

Factor 2: 
# observations 

100 –0.41 ns –1.71 –4.37 –4.70 –1.00

Factor 3 : 
Disturbance 
term

10% 1.58 1.95 4.10 4.43 1.50

Factor 4: 
Path distance 

0.25 –24.16 –5.89 –9.29 –9.58 –6.51

Factor 5: 
Model 
complexity 

low –1.07 –2.14 –4.94 –4.62 –1.80

Factor 6: 
Segment sizes

un-
balanced

0.25 ns 0.68 0.38 ns 0.21 ns 0.22 ns

Intercept –1.66 –0.15 ns 2.20 2.66 –0.43 ns

1 
 

over-
estimation

Factor 1: 
# segments 

2 0.55 0.27 ns 0.95 ns 2.63 0.02 ns

Factor 2: 
# observations 

100 –0.67 –1.43 –2.85 –4.24 –1.63

Factor 3 : 
Disturbance 
term

10% 0.35 0.61 1.35 2.28 0.58

Factor 4: 
Path distance 

0.25 –0.49 –1.17 –2.81 –5.02 –1.03

Factor 5: 
Model 
complexity 

low –2.08 –2.34 –1.81 –1.83 –2.42

Factor 6: 
Segment sizes

un-
balanced

0.59 0.57 1.37 1.01 ns 1.05

Intercept 0.87 0.08 ns –1.30 –1.08 ns 0.32 ns

-2 logL 403.27 448.53 333.11 293.10 452.69

%correct 68.3 76.6 94.8 95.1 71.6

ns = nonsignificant; all others are significant at p ≤ 0.01.
Factor 1: Number of segments; Factor 2: Number of observations; Factor 3: Disturbance term;  
Factor 4: Distance between segment-specific path coefficients; Factor 5: Model complexity; Factor 6: Rela-
tive segment sizes.
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should be retained from the data has hitherto not been investigated scientifically in this 
context.

In the overall results, AIC4 shows the highest overall success rate of 58% for model 
selection in FIMIX-PLS, followed by BIC (57%), CAIC (55%), and HQ (55%). A de-
tailed result analysis shows that a joint consideration of AIC3 and CAIC is very prom-
ising, because these criteria indicate the correct number of segments in 84% of all cases 
in which both criteria indicate the same number of segments. 

Furthermore, the results show the tendency of several criteria to under- and overfit. 
Although researchers usually conclude that such criteria are inappropriate for model 
selection (e.g., Andrews and Currim (2003a; 2003c); Henson, Reise, and Kim (2007)), 
we believe that these performances yield important implications. For example, if AIC 
indicates more segments than competing criteria, then due to its overfitting tendency, 
researchers should conclude that the appropriate number of segments to retain is 
lower than actually indicated by AIC. The same holds for underfitting, for example, 
for AWE or ICL-BIC. However, because of their low overall success rate, these criteria 
should not be directly used for model selection, as was common in past research studies 
that considered AIC, amongst others, in the course of their analysis (e.g., Hahn et al. 
(2002); Ringle (2006); Ringle et al. (2009); Sarstedt, Schwaiger, and Ringle (2009)). 

In view of all the classification criteria’s overall weak performance, the entropy con-
cept does not appear promising for model selection in FIMIX-PLS path modeling. By 
basing the model selection decision primarily on entropy-based statistics, researchers 
may misspecify the number of segments, thus jeopardizing the validity of their results 
(e.g., the analyses by Conze (2007) and Scheer (2008) explicitly rely on Ramaswamy, 
DeSarbo, and Reibstein’s (1993) entropy criterion). However, the entropy concept 
should not be disregarded per se, since it indicates the degree of separation between 
the segments. This criterion is critical to assessing whether the analysis produces well-
separated clusters, which is important for deriving management implications from any 
analysis. Thus, researchers may revert to EN when its levels show relatively high dis-
parity, while there are relatively few differences in the information criterion outcomes 
of two to three consecutive segments that lie at the minimum level of all the different 
numbers of analyzed segments’ results. Nevertheless, researchers should rely primarily 
on information criteria when deciding on the number of segments in FIMIX-PLS. In 
summary, our key finding and decision rule are to use AIC3 and CAIC jointly when 
evaluating FIMX-PLS results.

Our study’s results match the findings of Andrews and Currim’s (2003c) study in sev-
eral regards. Both BIC and CAIC exhibit similar underfitting rates (38% | 40%), as 
well as success (61% | 58%) and overfitting rates (1% | 1%) compared to those of our 
study (40% | 43%, 57% | 55%, and 3% | 2%). However, although AIC3 performed best 
overall in Andrews and Currim’s (2003c) study, its performance is only average in our 
study. Further, AIC performs much worse in our study, which more closely resembles 
the results reported by Hawkins, Allen, and Stromberg (2001) and Sarstedt (2008b). 
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Compared to those of Andrews and Currim (2003c), the success rates in our study are 
generally lower and show a greater variance across the criteria. This result is due to the 
factor levels chosen, the FIMIX-PLS method’s different properties and because in our 
study we consider a greater number of criteria. When we more closely compare the two 
studies’ simulation designs, the reason for this divergence becomes obvious. Andrews 
and Currim (2003c) choose extremely high levels of mean separation between seg-
ment-specific parameters, but these levels do not reflect actual applications of regres-
sion-based mixture models well. In line with prior applications of FIMIX-PLS, in our 
research we use a minimum path coefficient separation level of 0.25, which strongly in-
fluences the criteria’s overall performance. The average success rate of the criteria at this 
factor level is a mere 18% our study, compared to 47% in that of Andrews and Currim 
(2003c), who specify a minimum mean separation level of 0.5.

Our study investigates only the ability of the criteria to determine the correct number of 
segments, but it does not consider the quality of the parameter recovery. However, we 
could argue that in a situation with an increased number of segments in which the majority 
of observations are classified correctly and which includes a favorable parameter recovery 
in some segments, is preferable to a second situation in which the number of segments is 
correct but the parameters are biased. This conflict between segment and parameter recovery 
has not yet been thoroughly addressed in the academic literature and a preference for either 
one or another aspect depends on the researcher’s subjective considerations. 

Future research should continue to search for better model selection criteria. Research 
in this field requires additional elaborations to integrate the costs of a wrong model 
selection decision into the measures by fitting a penalty function. Following Andrews 
and Currim’s (2003a) argument, managers must be enabled to consider the costs and 
benefits (in monetary units) of under- or overestimating the true number of segments. 
Research should also evaluate the role of additional data characteristics commonly en-
countered in empirical studies, such as missing values and multicollinearity. Further as-
sessments of the data characteristics’ influence on model selection criteria performance 
would prove valuable for developing new criteria specifically suited for the application 
of FIMIX-PLS in specific data constellations.
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6	A ppendix

Table A1:	 Information and classification criteria considered in the study

Criterion Description Reference
           Information Criteria

Akaike Information Criterion AIC = –2 ∙ lnL + 2 ∙ Ns Akaike (1973)

Small Sample AIC AICc = AIC + [2 ∙ (Ns + 1)∙ (Ns + 2)]/(N – Ns – 1) Hurvich and Tsai 

(1989)

Modified AIC 3 AIC3 = –2 ∙ lnL + 3 ∙ Ns Bozdogan (1994)

Modified AIC 4 AIC4 = –2 ∙ lnL + 4 ∙ Ns Bozdogan (1994)

Bayes Information Criterion BIC = –2 ∙ lnL + ln(N) ∙ Ns Schwarz (1978)

Consistent AIC CAIC = –2 ∙ lnL + [ln(N) + 1] ∙ Ns Bozdogan (1987)

Minimum Description Length 2 MDL2 = –2 ∙ lnL + 2 ∙ ln(N) ∙ Ns Liang, Jaszczak 

and Coleman (1992)

Minimum Description Length 5 MDL2 = –2 ∙ lnL + 5 ∙ ln(N) ∙ Ns Liang, Jaszczak 

and Coleman (1992)

Hannan-Quinn Criterion HQ = –2 ∙ lnL + 2 ln[ln(N)] ∙ Ns Hannan and Quinn 

(1979)

       Classification Criteria
Complete Log-Likelihood

lnLc = ​∑ 
i=1

​ 
N

  ​​ ​∑ 
s=1

​ 
N

  ​​zisln(f(ηi|ξi,Bs, Γs, Ψs)) + ​∑ 
i=1

​ 
N

  ​​ ​∑ 
s=1

​ 
N

  ​​zisln(ρs)
Dempster, Laird, 
and Rubin (1977)

Normalized Entropy Criterion NEC = E(S) / [ln(S) – ln(1)] Celeux and Soromenho 
(1996)

Integrated Completed 
Likelihood-BIC

ICL – BIC = –2 ∙ lnL + [ln(N)] ∙ Ns + 2 ∙ E(S) Biernacki, Celeux, 
and Govaert (2000)

Partition Coefficient
 PC =  ​∑ 

i=1
​ 

N

  ​​ ​∑ 
s=1

​ 
N

  ​​p2
is /N

Bezdek (1981)

Non-Fuzzy Index
NFI = [S( ​∑ 

i=1
​ 

N

  ​​ ​∑ 
s=1

​ 
S

  ​​ p2
is ) – N]/ N · (S – 1)

Roubens (1978)

Partition Entropy
PE = –[ ​∑ 

i=1
​ 

N

  ​​ ​∑ 
s=1

​ 
S

  ​​ pis  · ln pis ]/N
Bezdek (1981)

Approximate Weight of Evidence AWE = –2 ∙ lnLc + 2 ∙ Ns ∙ [1,5 + ln(N)] Banfield and Raftery (1993)

Classification Likelihood  
Criterion

CLC = –2 ∙ lnL + 2 ∙ E(S) Biernacki and Govaert 
(1997)

Entropy Criterion
EN = 1 – [ ​∑ 

i=1
​ 

N

  ​​ ​∑ 
s=1

​ 
S

  ​​  – pis  · ln pis ]/NlnS
Ramaswamy, DeSarbo, 

and Reibstein (1993)

Note: lnL describes the log-likelihood of the model, Ns is the number of parameters required to estimate the 
model with S segments, N is the sample size, pis is the a-posteriori probability of observation i belonging to 
segment s, zis is a 0/1 assignment variable of observation i to segment s, E(S) the estimated entropy for a model 

with S segments defined as E(S) = – ​∑ 
i=1

​ 
N

  ​​ ​∑ 
s=1

​ 
S

  ​​ pis ln (pis ).
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Figure A2:	 Simple PLS path model 
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Figure A3:	 Complex PLS path model
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Table A4:	 FIMIX-PLS extensions

(1)	The calculation of the distribution values as presented by Hahn et al. (2002) requires 
additional clarification, especially for the somewhat inconsistent (and confusing) 
namingof variables Equation 4 in the paper by Hahn et al. (2002, p. 249) presents the 
calculation of the distribution values as follows:

ηi = ​∑ 
s = 1

 ​ 
S

  ​  ​ρs [ ​   |Bs|
 _________  

(2π)Q/2​  √
___

 |Ψs| ​
 ​ ]exp {– ​ 1 _ 

2
 ​(Bsηi + Γs ξi)′ Ψ–1

s (Bsηi + Γsξi) },	 (3)

	 This equation requires accounting for Equation 1 in Hahn et al.’s paper (2002, p. 248) 
and footnote 23 on the same page. Here, the authors explain that the inner relations 
of the PLS path model can be expressed by:

Bηi + Γξi = ζi,    with B = I – Bs ⋀ Γ = –Γs.	 (4)

	 However, the vector of residuals ζi must be used when calculating the distribution 
values. Hence, the original presentation of Equation 4 in the paper by Hahn et al. 
(2002, p. 249) requires the following clarification:

ηi = ​∑ 
s = 1

 ​ 
S

  ​  ​ρk [  ​  1
 _________  

(2π)Q/2​  √
___

 |Ψs| ​
 ​ ]exp {– ​ 1 _ 

2
 ​((I – Bs)ηi +(–Γs)ξi)′ Ψ–1

s (I – Bs)ηi 

	 +(–Γs)ξi)},	 (5)

with |B| = |I – Bs| = 1.

(2) For a pre-specified number of S segments, the E-step in the FIMIX-PLS EM algo-
rithm computation of results needs, as provisional estimates, the weighted least squares 
regressions of the previous M-step. The (S-) weighted least squares computation in the 
M-step of the FIMIX-PLS EM algorithm, as presented by Hahn et al. (2002, p. 253) 
in equations 14 and 15, is erroneous. The original presentation of these equations is 
given as follows:

τms = [​∑ 
i=1

 ​ 
N

  ​  ​pis(X′miXmi)]–1 [​∑ 
i=1

 ​ 
N

  ​  ​pis(X′miYmi)]	 (6)

ωms = [​∑ 
i=1

 ​ 
N

  ​  ​pis(Y mi – Xmi τms)(Y mi – Xmi τms)′ /Iρs ]	 (7)

However, this presentation must be corrected as follows:

τms = [(X′mPsXm]–1 [X′mPsYm]	 (8)

ωms = [Y m  –  Xm τms)′(Y m – Xm τms)′ ]Ps]/Iρs 	 (9)
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Thus, the equations follow the normal weighted least squares procedure.

(3) An important issue in mixture models is the differentiation between the likelihood of 
the model from the observed data and the likelihood of the complete data problem 
that is used for solving the optimization problem in the EM algorithm. The likeli-
hood of the observed data is given by Equation 5 in the paper by Hahn et al. (2002, 
p. 250):

L = ​∏ 
i = 1

 ​ 
N

  ​​[ ​∑ 
s = 1

 ​ 
S

  ​  ​ρk  [ ​   |Bs|
 _________  

(2π)Q/2​  √
___

 |Ψs| ​
 ​ exp {– ​ 1 _ 

2
 ​(Bsηi + Γs ξi)′ Ψ–1

s (Bsηi + Γsξi) }]]. 	 (10)

	 A simplified presentation of this equation is as follows

L = ​∏ 
i = 1

 ​ 
N

  ​​ ( ​∑ 
s = 1

 ​ 
S

  ​  ​ρs(f(ηi|ξi,Bs, Γs, Ψs))).	 (11)

	 Following from this description, the log-likelihood of the model is

LnL = ​∑ 
i = 1

 ​ 
N

  ​ln​ ( ​∑ 
s = 1

 ​ 
S

  ​  ​ρs(f(ηi|ξi,Bs, Γs, Ψs))).	 (12)

	 This log-likelihood presentation must be used to compute the information criteria 
for the model selection. Conversely, the complete log-likelihood function lnLc (e.g., 
Dempster, Laird, and Rubin (1977)) must be used for optimization using the EM 
algorithm which takes the following form (cp. Equation 9 in Hahn et al. (2002, p. 
251)):

LnLC = ​∑ 
i = 1

 ​ 
N

  ​​   ​∑ 
s = 1

 ​ 
S

  ​  ​zisln(f(ηi|ξi,Bs, Γs, Ψs)) + ​∑ 
i = 1

 ​ 
N

  ​​   ​∑ 
s = 1

 ​ 
S

  ​  ​zisln(ρs).	 (13)

	 Thus, a potential uncertainty about these two different versions of the log-likelihood 
may be avoided in the paper by Hahn et al. (2002). In fact, the FIMIX-PLS module 
in the current version of the SmartPLS software application (Ringle, Wende, and Will 
(2005b)) uses lnLc from the EM algorithm for calculating both the final segmentation 
results and the information criteria outcomes, but the regular lnL computation should 
be used for the latter.
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A5:	 Explanation of symbols

Am Number of exogenous latent variables in the inner path model as 
independent variables in regression m

am Exogenous variable am with am = 1,…, Am
Bm Number of endogenous latent variables in the inner path model as 

independent variables in regression m
bm Endogenous variable bm with bm = 1,…, Bm
γamms Regression coefficient of am in regression m for segment s
βbmms Regression coefficient of bm in regression m for segment s
τms ((γamms),(βbmms)′ vector of the regression coefficients
ωms Cell(m x m) of Ψs
δ Improvement of log-likelihood value 
N Number of observations (i = 1,…, N)
S Number of segments (s = 1,…, S)
Q Number of endogenous latent variables (m = 1,…, Q)
I Identity matrix
Ns Ns = (S – 1) + S · R + S · Q degrees of freedom for solutions with 

S segments
pis A-posteriori probability of membership of observation i and segment s
Ps Vector of a posteriori probabilities of segment s
R Number of predictors for all regressions in the structural model
Xm Case values of the independent variable for regression m 
Ym Case values of the dependent variable for regression m 
zis 0/1 assignment variable of observation i to segment s 

Distribution function of segment s
Bs Matrix of path coefficients between endogenous latent variables in 

segment s
Γs Matrix of path coefficients between exogenous and endogenous latent 

variables in segment s 
ζi Vector for endogenous latent variables’ residuals of observation i 

Vector for endogenous latent variables’ scores of observation i 
Vector for exogenous latent variables’ scores of observation i

ρs Relative size of segment s 
ψs Matrix with variances of the regressions in the structural model on the 

diagonal, zero else
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